Let L[E] be an iterable tame extender model. We analyze to which extent L[E] knows fragments of its own iteration strategy. Specifically, we prove that inside L[E], for every cardinal κ which is not a limit of Woodin cardinals there is some cutpoint t < κ such that Jκ[E] is iterable above t with respect to iteration trees of length less than κ.As an application we show L[E] to be a model of the following two cardinals versions of the diamond principle. If λ > κ > ω1 are cardinals, then holds true, and if in addition λ is regular, then holds true.
We show that either of the following hypotheses imply that there is an inner model with a proper class of strong cardinals and a proper class of Woodin cardinals. 1) There is a countably closed cardinal κ ≥ ℵ such that □κ and □(κ) fail. 2) There is a cardinal κ such that κ is weakly compact in the generic extension by Col(κ, κ+). Of special interest is 1) with κ = ℵ3 since it follows from PFA by theorems of Todorcevic and Velickovic. Our main new technical result, which is due to the first author, is a weak covering theorem for the model obtained by stacking mice over Kc∥κ.
Abstract.We construct, assuming that there is no inner model with a Woodin cardinal but without any large cardinal assumption, a model Kc which is iterable for set length iterations, which is universal with respect to all weasels with which it can be compared, and (assuming GCH) is universal with respect to set sized premice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.