Consumption of Echinacea at the first sign of symptoms has been clinically shown to reduce both the severity and duration of cold and flu. Quantitative polymerase chain reaction optimized for precision and reproducibility was utilized to explore in vitro and in vivo changes in the expression of immunomodulatory genes in response to Echinacea. In vitro exposure of THP-1 cells to 250 microg/ml of Echinacea species extracts induced expression (up to 10-fold) of the interleukin-1alpha, interleukin-1beta, tumor necrosis factor-alpha, intracellular adhesion molecule, interleukin-8, and interleukin-10 genes. This preliminary result is consistent with a general immune response and activation of the nonspecific immune response cytokines. In vivo gene expression within peripheral leukocytes was evaluated in six healthy nonsmoking subjects (18-65 years of age). Blood samples were obtained at baseline and on Days 2, 3, 5, and 12 after consuming a commercial blended Echinacea product, three tablets three times daily (1518 mg/day) for two days plus one additional dose (506 mg) on day three. Serum chemistry and hematological values were not different from baseline, suggesting that liver or bone marrow responses were not involved in acute responses to Echinacea. The overall gene expression pattern at 48 hr to 12 days after taking Echinacea was consistent with an antiinflammatory response. The expression of interleukin-1beta, tumor necrosis factor-alpha, intracellular adhesion molecule, and interleukin-8 was modestly decreased up through Day 5, returning to baseline by day 12. The expression of interferon-alpha steadily rose through Day 12, consistent with an antiviral response. These preliminary data present a gene expression response pattern that is consistent with Echinacea's reported ability to reduce both the duration and intensity of cold and flu symptoms.
The antifungal activity and 5-lipoxygenase-inhibiting activity of extracts of five wild and three commercially used taxa of the genus Echinacea were investigated. The near-UV mediated antifungal bioassays included clinically isolated Cryptococcus neoformans, two Candida albicans isolates (D10 and CN1A) with amphotericin B resistance, as well as established and emerging filamentous fungal pathogens (Trichophyton tonsurans, T. mentagrophytes, Microsporum gypseum and Pseudallescheria boydii). Root extracts of the eight Echinacea taxa showed antifungal activity against most of the pathogenic fungi. The inhibition of the 5-lipoxygenase (5-LOX) enzyme of the arachadonic acid pathway was determined by HPLC detection of a direct metabolic product (LTB 4 ) of 5-LOX derived from stimulated rat basophilic cells. Root extracts of the three commercial species of Echinacea (E. purpurea, E. pallida var. angustifolia, E. pallida var. pallida) inhibited the 5-LOX enzyme. E. pallida var. angustifolia was the most potent of the three. The results show that Echinacea spp. have significant antifungal and antiinflammatory activity.Pharmaceutical Biology Downloaded from informahealthcare.com by Emory University on 08/07/15For personal use only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.