Atmospheric black carbon makes an important but poorly quantified contribution to the warming of the global atmosphere. Laboratory and modelling studies have shown that the addition of non-black carbon materials to black carbon particles may enhance the particles' light absorption by 50 to 60% by refracting and reflecting light. Real world experimental evidence for this 'lensing' effect is scant and conflicting, showing that absorption enhancements can be less than 5% or as large as 140%. Here we present simultaneous quantifications of the composition and optical properties of individual atmospheric black carbon particles. We show that particles with a mass ratio of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic sources, are best represented as having no absorption enhancement. In contrast, black carbon particles with a ratio greater than 3, which is typical of biomass burning emissions, are best described assuming optical lensing leading to an absorption enhancement. We introduce a generalised hybrid model approach for estimating scattering and absorption enhancements based on laboratory and atmospheric observations. We conclude that the occurrence of the absorption enhancement of black carbon particles is determined by the particles' mass ratio of non-black carbon to black carbon.Atmospheric black carbon (BC) makes the second largest single contribution after CO 2 to climate forcing in the present-day atmosphere 1 . Previous detailed modelling and laboratory studies have shown that weakly absorbing non-BC materials contained within the same particles as BC can significantly enhance the absorption per unit mass of the latter through refraction and internal reflections, sometimes referred to as the 'lensing effect' 2,3 . A "coreshell" description 4 has often been applied to describe this effect when coatings envelop the central BC core, but this oversimplifies the complex particle morphologies 5 . The non-BC components may not be evenly distributed and the BC core is not necessarily completely enclosed, and as such the absorption enhancement predicted using the core-shell approach could greatly overestimate the real value 3 . Microscopy 5,6 can examine BC microphysical properties but has limited quantitative capability and may evaporate semi-volatile materials.By detecting the remaining non-BC fragment after laser induced incandescence with a single particle soot photometer (SP2 7 , DMT inc.), Sedlacek et al. 8 and Moteki et al. 9 reported the non-core-shell structure of some BC particles, however they did not provide an appropriate model approach to estimate optical properties. Measurement of single BC particle mass ratioIn this study, for the first time we quantify the mixing state of individual BC particles using morphology-independent measurements of the total particle mass (M p ) and the mass of the refractory black carbon, rBC (M rBC ) from a variety of laboratory and field experiments. We determined the mass ratio, M R (= M non-BC /M rBC ), where M non-BC is the mas...
2Cheng, Z. et al. Status and characteristics of ambient PM2.5 pollution in global megacities.
Food-cooking organic aerosols (COA) are one of the primary sources of submicron particulate matter in urban environments. However, there are still many questions surrounding source apportionment related to instrumentation as well as semivolatile partitioning because COA evolve rapidly in the ambient air, making source apportionment more complex. Online measurements of emissions from cooking different types of food were performed in a laboratory to characterize particles and gases. Aerosol mass spectrometer (AMS) measurements showed that the relative ionization efficiency for OA was higher (1.56-3.06) relative to a typical value of 1.4, concluding that AMS is over-estimating COA and suggesting that previous studies likely over-estimated COA concentrations. Food-cooking mass spectra were generated using AMS, and gas and particle food markers were identified with filter inlets for gases and aerosols-chemical ionization mass spectrometer (CIMS) measurements to be used in future food cooking-source apportionment studies. However, there is a considerable variability in both gas and particle markers, and dilution plays an important role in the particle mass budget, showing the importance of using these markers with caution during receptor modeling. These findings can be used to better understand the chemical composition of COA, and they provides useful information to be used in future source-apportionment studies.
Abstract. Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality such as bonfires and fireworks. High aerosol and gas concentrations generated from public bonfires or fireworks were measured in order to understand the night-time chemical processes and their atmospheric implications. Nitrogen chemistry was observed during Bonfire Night with nitrogen containing compounds in both gas and aerosol phases and further N2O5 and ClNO2 concentrations, which depleted early next morning due to photolysis of NO3 radicals and ceasing production. Particulate organic oxides of nitrogen (PONs) concentrations of 2.8 µg m−3 were estimated using the m ∕ z 46 : 30 ratios from aerosol mass spectrometer (AMS) measurements, according to previously published methods. Multilinear engine 2 (ME-2) source apportionment was performed to determine organic aerosol (OA) concentrations from different sources after modifying the fragmentation table and it was possible to identify two PON factors representing primary (pPON_ME2) and secondary (sPON_ME2) contributions. A slight improvement in the agreement between the source apportionment of the AMS and a collocated AE-31 Aethalometer was observed after modifying the prescribed fragmentation in the AMS organic spectrum (the fragmentation table) to determine PON sources, which resulted in an r2 = 0.894 between biomass burning organic aerosol (BBOA) and babs_470wb compared to an r2 = 0.861 obtained without the modification. Correlations between OA sources and measurements made using time-of-flight chemical ionisation mass spectrometry with an iodide adduct ion were performed in order to determine possible gas tracers to be used in future ME-2 analyses to constrain solutions. During Bonfire Night, strong correlations (r2) were observed between BBOA and methacrylic acid (0.92), acrylic acid (0.90), nitrous acid (0.86), propionic acid, (0.85) and hydrogen cyanide (0.76). A series of oxygenated species and chlorine compounds showed good correlations with sPON_ME2 and the low volatility oxygenated organic aerosol (LVOOA) factor during Bonfire Night and an event with low pollutant concentrations. Further analysis of pPON_ME2 and sPON_ME2 was performed in order to determine whether these PON sources absorb light near the UV region using an Aethalometer. This hypothesis was tested by doing multilinear regressions between babs_470wb and BBOA, sPON_ME2 and pPON_ME2. Our results suggest that sPON_ME2 does not absorb light at 470 nm, while pPON_ME2 and LVOOA do absorb light at 470 nm. This may inform black carbon (BC) source apportionment studies from Aethalometer measurements, through investigation of the brown carbon contribution to babs_470wb.
Anthropogenic biomass burning is poorly represented in models due to a lack of observational data but represents a significant source of short‐lived toxic gases. Guy Fawkes Night (bonfire night) is a regular UK‐wide event where open fires are lit and fireworks are set off on 5 November. Previous gas phase studies of bonfire night focus on persistent organic pollutants primarily using off‐line techniques. Here the first simultaneous online gas phase measurements of several classes of compounds including isocyanates, amides, nitrates, and nitro‐organics are made during bonfire night (2014) in Manchester, UK, using a time‐of‐flight chemical ionization mass spectrometer (ToF‐CIMS) using iodide reagent ions. A shallow boundary layer and low wind speeds favor pollutant buildup with typical HCN, HNCO, and CH3NCO concentrations of tens of parts per thousand increasing by a factor of 13 to potentially harmful levels >1 ppb. Normalized excess mixing ratios relative to CO for a range of isocyanates and amides are reported for the first time. Using a HNCO:CO ratio of 0.1%, we distinguish emissions from flaming and smoldering combustion and report more accurate normalized excess mixing ratios for the distinct burning phases. While bonfire night is a highly polluting event, NO2 concentrations measured at this location are higher at other times, highlighting the importance of traffic as an NO2 emission source at this location. A risk communication methodology is used to equate enhancements in hourly averaged black carbon and NO2 concentrations caused by bonfire night as an equivalent of 26.1 passively smoked cigarettes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.