Ultrasmall, crystalline, and dispersible NiO nanoparticles are prepared for the first time, and it is shown that they are promising candidates as catalysts for electrochemical water oxidation. Using a solvothermal reaction in tert‐butanol, very small nickel oxide nanocrystals can be made with sizes tunable from 2.5 to 5 nm and a narrow particle size distribution. The crystals are perfectly dispersible in ethanol even after drying, giving stable transparent colloidal dispersions. The structure of the nanocrystals corresponds to phase‐pure stoichiometric nickel(ii) oxide with a partially oxidized surface exhibiting Ni(iii) states. The 3.3 nm nanoparticles demonstrate a remarkably high turn‐over frequency of 0.29 s–1 at an overpotential of g = 300 mV for electrochemical water oxidation, outperforming even expensive rare earth iridium oxide catalysts. The unique features of these NiO nanocrystals provide great potential for the preparation of novel composite materials with applications in the field of (photo)electrochemical water splitting. The dispersed colloidal solutions may also find other applications, such as the preparation of uniform hole‐conducting layers for organic solar cells.
Abstract. Following a recent proposal by Burrard-Lucas et al. [unpublished, arXiv: 1203.5046] we intercalated FeSe by Li in liquid ammonia. We report on the synthesis of new LixFe2Se2(NH3)y phases as well as on their magnetic and superconducting properties. We suggest that the superconducting properties of these new hybride materials appear not to be influenced by the presence of electronically-innocent Li(NH2) salt moieties. Indeed, high onset temperatures of 44 K and shielding fractions of almost 80% were only obtained in samples containing exclusively Lix(NH3)y moieties acting simultaneously as electron donors and spacer units. The c-axis of the new intercalated phases is strongly enhanced when compared to the alkali-metal intercalated iron selenides A1−xFe2−ySe2 with A = K, Rb, Cs, Tl with Tc = 32 K.
In this work we report on the syntheses and properties of several new Ni complexes featuring the chelating bisguanidines bis(tetramethylguanidino)benzene (btmgb), bis(tetramethylguanidino)naphthalene (btmgn), and bis(tetramethylguanidino)biphenyl (btmgbp) as ligands. All complexes were structurally characterized by single-crystal X-ray diffraction and quantum chemical calculations. A detailed inspection of the magnetic susceptibility of [(btmgb)NiX(2)] and [(btmgbp)NiX(2)] (X=Cl, Br) revealed a linear temperature dependence of chi(-1)(T) above 50 K, which was in agreement with a Curie-Weiss-type behavior and a triplet ground state. Below approximately 25 K, however, magnetic susceptibility studies of the paramagnetic d(8) Ni complexes revealed the presence of a significant zero-field splitting (ZFS) that results from spin-orbit mixing of excited states into the triplet ground state. The electronic consequences that might arise from the mixing of states as well as from a possible non-innocent behavior of the ligand have been explored by an experimental charge density study of [(btmgb)NiCl(2)] at low temperatures (7 K). Here, the presence of ZFS was identified as one potential reason for the flat angle-spherical Cl-Ni-Cl deformation potential and the distinct differences between the angle-spherical X-Ni-X valence angles observed by experiment and predicted by DFT. An analysis of the topology of the experimentally and theoretically derived electron-density distributions of [(btmgb)NiCl(2)] confirmed the strong donor character of the bisguanidine ligand but clearly ruled out any significant non-innocent ligand (NIL) behavior. Hence, [(btmgb)NiCl(2)] provides an experimental reference system to study the mixing of certain excited states into the ground state unbiased from any competing NIL behavior.
The electronic structures of the isotypic carbides Sc3TC4 (see picture; T=Fe, Co, Ni) are investigated by theoretical and experimental charge‐density studies. Even tiny differences in the electronic band structure of these solids are reflected in the properties of the Laplacian of the experimental electron density. Only the cobalt carbide is superconducting below 4.5 K and displays a structural phase transition around 70 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.