In a green energy economy, electrocatalysis is essential for chemical energy conversion and to produce value added chemicals from regenerative resources. To be widely applicable, an electrocatalyst should comprise the Earth's crust's most abundant elements. The most abundant 3d metal, iron, with its multiple accessible redox states has been manifold applied in chemocatalytic processes. However, due to the low conductivity of FeIIIOxHy phases, its applicability for targeted electrocatalytic oxidation reactions such as water oxidation is still limited. Herein, it is shown that iron incorporated in conductive intermetallic iron silicide (FeSi) can be employed to meet this challenge. In contrast to silicon‐poor iron–silicon alloys, intermetallic FeSi possesses an ordered structure with a peculiar bonding situation including covalent and ionic contributions together with conducting electrons. Using in situ X‐ray absorption and Raman spectroscopy, it could be demonstrated that, under the applied corrosive alkaline conditions, the FeSi partly forms a unique, oxidic iron(III) phase consisting of edge and corner sharing [FeO6] octahedra together with oxidized silicon species. This phase is capable of driving the oxyge evolution reaction (OER) at high efficiency under ambient and industrially relevant conditions (500 mA cm−2 at 1.50 ± 0.025 VRHE and 65 °C) and to selectively oxygenate 5‐hydroxymethylfurfural (HMF).
A method to predict the crystal structure of equiatomic ternary compositions based only on the constituent elements was developed using cluster resolution feature selection (CR-FS) and support vector machine (SVM) classification. The supervised machine-learning model was first trained with 1037 individual compounds that adopt the most populated ternary 1:1:1 structure types (TiNiSi-, ZrNiAl-, PbFCl-, LiGaGe-, YPtAs-, UGeTe-, and LaPtSi-type) and then validated using an additional 519 compounds. The CR-FS algorithm improves class discrimination and indicates that 113 variables including size, electronegativity, number of valence electrons, and position on the periodic table (group number) influence the structure preference. The final model prediction sensitivity, specificity, and accuracy were 97.3%, 93.9%, and 96.9%, respectively, establishing that this method is capable of reliably predicting the crystal structure given only its composition. The power of CR-FS and SVM classification is further demonstrated by segregating the crystal structure of polymorphs, specifically to examine polymorphism in TiNiSi- and ZrNiAl-type structures. Analyzing 19 compositions that are experimentally reported in both structure types, this machine-learning model correctly identifies, with high confidence (>0.7), the low-temperature polymorph from its high-temperature form. Interestingly, machine learning also reveals that certain compositions cannot be clearly differentiated and lie in a "confused" region (0.3-0.7 confidence), suggesting that both polymorphs may be observed in a single sample at certain experimental conditions. The ensuing synthesis and characterization of TiFeP adopting both TiNiSi- and ZrNiAl-type structures in a single sample, even after long annealing times (3 months), validate the occurrence of the region of structural uncertainty predicted by machine learning.
Electrochemical water splitting remains a frontier research topic in the quest to develop artificial photosynthetic systems by using noble metal‐free and sustainable catalysts. Herein, a highly crystalline CuSe has been employed as active electrodes for overall water splitting (OWS) in alkaline media. The pure‐phase klockmannite CuSe deposited on highly conducting nickel foam (NF) electrodes by electrophoretic deposition (EPD) displayed an overpotential of merely 297 mV for the reaction of oxygen evolution (OER) at a current density of 10 mA cm−2 whereas an overpotential of 162 mV was attained for the hydrogen evolution reaction (HER) at the same current density, superseding the Cu‐based as well as the state‐of‐the‐art RuO2 and IrO2 catalysts. The bifunctional behavior of the catalyst has successfully been utilized to fabricate an overall water‐splitting device, which exhibits a low cell voltage (1.68 V) with long‐term stability. Post‐catalytic analyses of the catalyst by ex‐situ microscopic, spectroscopic, and analytical methods confirm that under both OER and HER conditions, the crystalline and conductive CuSe behaves as an electro(pre)catalyst forming a highly reactive in situ crystalline Cu(OH)2 overlayer (electro(post)catalyst), which facilitates oxygen (O2) evolution, and an amorphous Cu(OH)2/CuOx active surface for hydrogen (H2) evolution. The present study demonstrates a distinct approach to produce highly active copper‐based catalysts starting from copper chalcogenides and could be used as a basis to enhance the performance in durable bifunctional overall water splitting.
A new type of Zintl phase is presented that contains endohedrally filled clusters and that allows for the formation of intermetalloid clusters in solution by a one-step synthesis. The intermetallic compound K(5-x)Co(1-x)Sn(9) was obtained by the reaction of a preformed Co-Sn alloy with potassium and tin at high temperatures. The diamagnetic saltlike ternary phase contains discrete [Co@Sn(9)](5-) clusters that are separated by K(+) ions. The intermetallic compound K(5-x)Co(1-x)Sn(9) readily and incongruently dissolves in ethylenediamine and in the presence of 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (2.2.2-crypt), thereby leading to the formation of crystalline [K([2.2.2]crypt)](5)[Co(2)Sn(17)]. The novel polyanion [Co(2)Sn(17)](5-) contains two Co-filled Sn(9) clusters that share one vertex. Both compounds were characterized by single-crystal X-ray structure analysis. The diamagnetism of K(5-x)Co(1-x)Sn(9) and the paramagnetism of [K([2.2.2]crypt)](5)[Co(2)Sn(17)] have been confirmed by superconducting quantum interference device (SQUID) and EPR measurements, respectively. Quantum chemical calculations reveal an endohedral Co(1-) atom in an [Sn(9)](4-) nido cluster for [Co@Sn(9)](5-) and confirm the stability of the paramagnetic [Co(2)Sn(17)](5-) unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.