Background: Understanding mid-term kinetics of immunity to SARS-CoV-2 is the cornerstone for public health control of the pandemic and vaccine development. However, current evidence is rather based on limited measurements, losing sight of the temporal pattern of these changes. Methods: We conducted a longitudinal analysis on a prospective cohort of COVID-19 patients followed up for >6 months. Neutralizing activity was evaluated using HIV reporter pseudoviruses expressing SARS-CoV-2 S protein. IgG antibody titer was evaluated by ELISA against the S2 subunit, the receptor binding domain (RBD), and the nucleoprotein (NP). Statistical analyses were carried out using mixed-effects models. Findings: We found that individuals with mild or asymptomatic infection experienced an insignificant decay in neutralizing activity, which persisted 6 months after symptom onset or diagnosis. Hospitalized individuals showed higher neutralizing titers, which decreased following a 2-phase pattern, with an initial rapid decline that significantly slowed after day 80. Despite this initial decay, neutralizing activity at 6 months remained higher among hospitalized individuals compared to mild symptomatic. The slow decline in neutralizing activity at mid-term contrasted with the steep slope of anti-RBD, S2, or NP antibody titers, all of them showing a constant decline over the follow-up period. Conclusions: Our results reinforce the hypothesis that the quality of the neutralizing immune response against SARS-CoV-2 evolves over the post-convalescent stage.
Humans show significant sex differences in the incidence and severity of respiratory diseases, including asthma and virus infection. Sex hormones contribute to the female sex bias in type 2 inflammation associated with respiratory diseases, consistent with recent reports that female lungs harbor greater numbers of GATA-3–dependent group 2 innate lymphoid cells (ILC2s). In this study, we determined whether sex hormone levels govern sex differences in the numbers, phenotype, and function of ILC2s in the murine lung and bone marrow (BM). Our data show that lungs of female mice harbor significantly greater ILC2 numbers in homeostasis, in part due to a major subset of ILC2s lacking killer-cell lectin like receptor G1 (KLRG1), a population largely absent in male lungs. The KLRG1− ILC2s were capable of type 2 cytokine production and increased with age after sexual maturity, suggesting that a unique functional subset exists in females. Experiments with gonadectomized mice or mice bearing either global or lymphocyte restricted estrogen receptor α (Esr1) deficiency showed that androgens rather than estrogens regulated numbers of the KLRG1− ILC2 subset and ILC2 functional capacity in the lung and BM, as well as levels of GATA-3 expression in BM ILC2s. Furthermore, the frequency of BM PLZF+ ILC precursors was higher in males and increased by excess androgens, suggesting that androgens act to inhibit the transition of ILC precursors to ILC2s. Taken together, these data show that a functional subset of KLRG1− ILC2s in females contributes to the sex bias in lung ILC2s that is observed after reproductive age.
Dendritic cells (DCs) initiate immune responses in barrier tissues including lung and skin. Conventional DC subsets, CD11b− (cDC1s) or CD11b+ (cDC2s), arise via distinct networks of transcription factors involving IRF4 and IRF8 and are specialized for unique functional responses. Using mice in which a conditional Irf4 or Irf8 allele is deleted in CD11c+ cells, we determined if IRF4 or IRF8 deficiency beginning in CD11c+ cDC precursors (pre-cDCs) changed the homeostasis of mature DCs or pre-DCs in the lung, dermis and spleen. CD11c-cre-Irf4−/− mice selectively lacked a lung-resident CD11chiCD11b+SIRPα+CD24+ DC subset, but not other lung CD11b+ DCs or alveolar macrophages. Numbers of CD11b+CD4+ splenic DCs, but not CD11b+ dermal DCs, were reduced, indicating cDC2s in the lung and dermis develop via different pathways. Irf4 deficiency did not alter numbers of cDC1s. CD11c-cre-Irf8−/− mice lacked lung-resident CD103+ DCs and splenic CD8α+ DCs, yet harbored increased IRF4-dependent DCs. This correlated with a reduced number of Irf8−/− pre-cDCs, which contained elevated IRF4, suggesting that Irf8 deficiency diverts pre-cDC fate. Analyses of Irf4 and Irf8 haploinsufficient mice showed that while one Irf4 allele was sufficient for lung cDC2 development, two functional Irf8 alleles were required for differentiation of lung cDC1s. Thus, IRF8 and IRF4 act in pre-cDCs to direct the terminal differentiation of cDC1 and cDC2 subsets in the lung and spleen. These data suggest that variation in IRF4 or IRF8 levels resulting from genetic polymorphisms or environmental cues will govern tissue DC numbers and therefore regulate the magnitude of DC functional responses.
Adaptor molecules are essential in organizing signaling molecules and in coordinating and compartmentalizing their activity. 3BP2 is a cytoplasmic adaptor protein mainly expressed by haematopoietic cells that has been shown to act as a positive regulator in T, B and NK cell signal transduction. 3BP2 is an important regulator of cytotoxic granule release in NK cells. Mast cells similarly degranulate following antigen-dependent aggregation of the high affinity receptor for IgE (FcεRI) on the cell surface. Activation of these cells induces the release of preformed inflammatory mediators and the de novo synthesis and secretion of cytokines and chemokines. Thus, mast cells participate in both innate and acquired responses. We observed that 3BP2 is expressed in human mast cells from diverse origins. Moreover 3BP2 co-immunoprecipitates with essential mast cell signaling mediators such as Lyn, Syk, and PLCγ, thus a role for this adaptor in mast cell function was postulated. In the present work, we used shRNA lentiviral targeting approach to silence 3BP2 expression in human mast cells. Our findings point to a requirement for 3BP2 in optimal immediate and late mast cells responses such as degranulation and IL-8 or GM-CSF secretion. 3BP2 was determined to be necessary for optimal phosphorylation of Syk, LAT and PLCγ1, critical signals for calcium release from intracellular stores. Taken together, our results show that by participating in FcεRI- mediated signal transduction 3BP2 is an important regulator of human mast cell activation. Thus, 3BP2 could be a potential therapeutic target for IgE-dependent mast cell-mediated inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.