The present paper focuses on the effect of swirl on important parameters of conical diffusers flows such as static pressure evolution, recirculation zones and wall shear stress. Governing equations are solved using a software based on the finite volume method. Moreover, turbulence effects are taken into account employing the k-ε RNG model with an ennhaced wall treatment. The Reynolds number has been kept constant at 10 5 , and various diffuser geometries were simulated, maintaining a high area ratio of 7 and varying the total divergence angle (16°, 24°, 40°, and 60°). Results showed that the swirl velocity component develops into a Rankine-vortex type or a forced-vortex type. In the former, swirl is not effective to prevent boundary layer separation, and a tailpipe is recommended to allow a large-scale mixing to enhance the pressure recovery process. In the latter case, boundary layer separation is prevented but an intermediary recirculation zone appears. Higher pressure recovery is attained at the exit of the diffuser with swirl addition, without the need of a tailpipe. Results also suggest that there is exists an imposed swirl intensity where the energy losses are minimum thus leading pressure recovery to an optimum level.
Wall-Modeled Large Eddy Simulation (WMLES) is a well-stablished technique for obtaining high-fidelity solutions of turbulent, high Reynolds number flows, with reasonably acceptable computational costs. However, for external flows, the very thin laminar boundary layer developing near the body leading edge imposes quite restrictive mesh resolution requirements, leading to prohibitively high computational costs for practical Reynolds numbers. We propose a wall-modeling approach for the laminar portion of the boundary layer in order to alleviate these costs by reducing the aforementioned mesh resolution requirements. The wall model is based on local self-similar solutions of the boundary layer, and is implemented in the same context of wall-stress models in the WMLES approach. An assessment of the model is done in terms of both pressure and skin friction coefficient distributions along the surface, for an incompressible, fully laminar flow around a NACA 0012 airfoil geometry, with a chord Reynolds number of Re c = 4.5 × 10 3 . The results obtained in the simulations using the proposed model are in good agreement with the reference solution, demonstrating the feasibility of the model for external laminar flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.