The contribution of 222Rn from domestic water wells to indoor air was investigated in a study of 28 houses near Conifer, CO. Air concentrations determined by alpha-track detectors (ATDs) and continuous radon monitors were compared with the predictions of a single-cell model. In many of the houses, the water supply was shown to contribute significantly to levels of indoor 222Rn. The data from the ATD study were augmented with a continuous monitoring study of a house near Lyons, CO. The well water in that house has the highest known concentration of 222Rn in water yet reported (93 MBq m-3). The temporal pattern in the indoor 222Rn concentration corresponds to water-use records. In general, it is difficult to quantify the proportion of indoor radon attributable to water use. Several lines of evidence suggest that the single-cell model underestimates this proportion. Continuous-monitoring data, although useful, are impractical due to the cost of the equipment. We propose a protocol for 222Rn measurement based on three simultaneous integrating radon detectors that may help estimate the proportion of indoor 222Rn derived from the water supply.
Adsorption processes are important in controlling U concentrations in ground water. Quantifying such processes is extremely difficult in that in situ conditions cannot be directly measured. One rock characteristic that must be known to quantify adsorption is the specific surface area of reactive minerals exposed to the ground water. We evaluate here three methods for estimating specific surface area in situ. The first is based on the dissolution kinetics of sodium feldspars, the second on emanation of radon-222 and the third on adsorption of naturally-occurring U. The radon-222 method yields estimates 5 to 8 orders of magnitude greater than those obtained via the other two methods; too large probably because of effects related to fracture geometry. Estimates of specific surface area based on modelling adsorption of natural U by aquifer materials are of comparable magnitude to those from the feldspar-dissolution kinetics approach. These conclusions are based on analyses of water from 145 wells in crystalline-rock aquifers from Pennsylvania, New Jersey, Maryland, and Colorado. Computer modelling of the chemical data using PHREEQE [1] showed that uraninite or coffinite approach saturation in reducing water, limiting total U to <2 × 10−9 m. Generally, U minerals are below saturation in oxidizing ground water, where uranyl-carbonate complexes are the dominant dissolved U species. Autoradioluxographs of thin sections show areas of concentration of radioactivity in the rocks and establish that U is concentrated along fracture boundaries and on ferric oxyhydroxide grain coatings. Because U minerals generally are undersaturated, U mobility is limited by adsorption onto ferric oxyhydroxides and other mineral surfaces. Calculations of uranyl adsorption from the ground water onto goethite using the program M1NTEQ [2] show that adsorption decreases with increased carbonate concentrations due to the formation of uranyl-carbonate complexes. Results of this paper improve our understanding of the mobility of U that might be released into oxidized ground water in crystalline rock from a breached radioactive-waste repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.