The recent development of core/shell engineering of rare earth doped luminescent nanoparticles has ushered a new era in fluorescence thermal biosensing, allowing for the performance of minimally invasive experiments, not only in living cells but also in more challenging small animal models. Here, the potential use of active-core/active-shell Nd(3+)- and Yb(3+)-doped nanoparticles as subcutaneous thermal probes has been evaluated. These temperature nanoprobes operate in the infrared transparency window of biological tissues, enabling deep temperature sensing into animal bodies thanks to the temperature dependence of their emission spectra that leads to a ratiometric temperature readout. The ability of active-core/active-shell Nd(3+)- and Yb(3+)-doped nanoparticles for unveiling fundamental tissue properties in in vivo conditions was demonstrated by subcutaneous thermal relaxation monitoring through the injected core/shell nanoparticles. The reported results evidence the potential of infrared luminescence nanothermometry as a diagnosis tool at the small animal level.
The current status of the use of luminescent nanoparticles for thermometry in animal models is reviewed in detail. The different types of luminescent nanoparticles capable of deep tissue temperature sensing are described, paying special attention to the physical mechanisms at the root of their thermal sensing capacity. Their thermal sensitivities are listed and compared. This review describes the most relevant experiments, in which luminescence nanothermometry has been successfully applied at the small animal level, including the development of controlled thermal therapies as well as subtissue diagnosis procedures. Advantages and disadvantages of different luminescent nanothermometers are discussed.
Advanced diagnostic procedures are required to satisfy the continuously increasing demands of modern biomedicine while also addressing the need for cost reduction in public health systems. The development of infrared luminescence-based techniques for in vivo imaging as reliable alternatives to traditional imaging enables applications with simpler and more cost-effective apparatus. To further improve the information provided by in vivo luminescence images, the design and fabrication of enhanced infrared-luminescent contrast agents is required. In this work, we demonstrate how simple dopant engineering can lead to infrared-emitting rare-earth-doped nanoparticles with tunable (0.1-1.5 ms) and medium-independent luminescence lifetimes. The combination of these tunable nanostructures with time-gated infrared imaging and time domain analysis is employed to obtain multiplexed in vivo images that are used for complex biodistribution studies.
Some of the old and unrealizable dreams of biomedicine have become possible thanks to the appearance of novel advanced materials such as luminescent nanothermometers, nanoparticles capable of providing a contactless thermal reading through their light emission properties. Luminescent nanothermometers have already been demonstrated to be capable of in vivo subcutaneous punctual thermal reading but their real application as diagnosis tools still requires demonstrating their actual capacity for the acquisition of in vivo, time-resolved subcutaneous thermal images. The transfer from 1D to 2D subcutaneous thermal sensing is blocked in the last years mainly due to the lack of high sensitivity luminescent nanothermometers operating in the infrared biological windows. This work demonstrates how core/shell engineering, in combination with selective rare earth doping, can be used to develop supersensitive infrared luminescent nanothermometers. Erbium, thulium, and ytterbium core-shell LaF 3 nanoparticles, operating within the biological windows, provide thermal sensitivities as large as 5% °C −1 . This "record" sensitivity has allowed for the final acquisition of subcutaneous thermal videos of a living animal. Subsequent analysis of thermal videos allows for an unequivocal determination of intrinsic properties of subcutaneous tissues, opening the venue to the development of novel thermal imaging-based diagnosis tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.