Tempurung kelapa dapat di tingkatkan nilai ekonominya dengan dijadikan sebagai karbon aktif. Sebelum dijadikan karbon aktif, tempurung kelapa dijadikan arang supaya mempunyai sifat lebih baik daripada bahan dasarnya. Karbon aktif merupakan arang yang telah dipadatkan melalui proses aktivasi, sehingga memiliki sifat daya serap yang lebih baik. Proses pembuatan karbon aktif melalui proses pirolisis yang dilanjutkan dengan proses aktivasi mampu memperbesar pori-pori pada arang tersebut sehingga meningkatkan daya serap. Ada beberapa macam teknologi aktivasi diantaranya aktivasi fisika dan aktivasi kimia. Studi literatur ini bertujuan untuk mengetahui teknologi aktivasi fisika beserta kelebihan dan kekurangannya, sehingga bisa menjadi acuan dalam pemilihan proses di pabrik aktivasi karbon. Aktivasi fisika merupakan proses aktivasi dengan cara memutuskan ikatan karbon dari senyawa organik pada suhu tinggi dan bantuan CO2 dan uap. Gas-gas tersebut berfungsi untuk memperluas struktur pori-pori arang sehingga meningkatkan luas permukaannya, menghilangkan substansi yang mudah menguap, serta menghilangkan tar atau hidrokarbon pengotor pada arang. Aktivasi fisika memiliki kelebihan antara lain tidak menggunakan bahan kimia, biaya pembuatannya yang relatif lebih murah, waktu proses relatif lebih singkat dan yield arang yang dihasilkan lebih besar. Aktivasi fisika juga memiliki beberapa kekurangan seperti struktur pori arang yang dihasilkan kurang baik dan dalam prosesnya memerlukan suhu tinggi.
Summary The use of renewable energy, such as wind and solar, has significantly increased in the last decade. However, these renewable technologies have the limitation of being intermittent; thus, storing energy in the form of compressed air is a promising option. In compressed air energy storage (CAES), the electrical energy from the power network is transformed into a high‐pressure storage system through a compressor. Then, when the demand for electricity is high, the stored high‐pressure air is used to drive a turbine to generate electricity. The advantages of CAES are its high energy density and quality, and for being environmentally friendly process. In the existing facilities of University of Auckland, New Zealand, air cavern is not available; thus, a high‐pressure tank is used to store the compressed air, which could provide an excellent opportunity for small size applications. There is a limited literature available on the temperature and pressure profiles in a typical high‐pressure tank during charging and discharging processes. Therefore, this research investigates how temperature and pressure inside a high‐pressure tank change during charging and discharging processes. It will provide a better understanding for heat transfer in such system. Furthermore, it will provide the necessary information needed for the designing of an efficient small‐scale CAES. In this work, air is compressed to a maximum pressure of 200 bar and stored into a 2 L tank, which is fully fitted with a pressure transducer and a thermocouple suitable for high‐pressure measurements. The charging and discharging process is theoretically modeled, and the results are compared with the experimental measurements, showing a good agreement. The heat balance on the system is used to validate the steady‐state condition, while dynamic analysis is used to predict the transient change of compressed air and tank wall temperatures. The theoretical modeling is undertaken by solving the differential equations describing the transient change in temperature of both air and tank wall. The results of this study show that air temperature rises from 24°C to 60°C at 100 bar and from approximately 17°C to over 60°C at 200 bar. During discharging process, air temperature drops from ambient to 5°C at starting pressure of 100 bar and to −20°C at starting pressure of 200 bar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.