This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature. © 2013 AIP Publishing LLC.
The spatial resolution of high-frequency ultrasound (HFU, >20 MHz) imaging systems is usually determined using wires perpendicular to the beam. Recently, two tissue-mimicking phantoms (TMPs) were developed to estimate the three-dimensional (3D) resolution. Each of the TMPs consist of nine, 1 cm wide slabs of tissue-mimicking material containing randomly distributed anechoic spheres. All anechoic spheres in one slab have the same dimensions, and their diameter is increased from 0.1 mm in the first slab to 1.09 mm in the last. The scattering background for one set of slabs was fabricated using 3.5 µm glass beads, while those of the second set were 6.4 µm. The ability of a HFU system to detect these spheres against a speckle background provides a realistic estimation of its 3D spatial resolution. In the present study, these TMPs were used with HFU systems using single-element transducers, linear arrays and annular arrays. The TMPs were immersed in water and each slab was scanned using a VisualSonics™ Vevo 770 and Vevo 2100, and a custom HFU system based on a 5-element annular array. The annular array had a nominal center frequency of 40 MHz, a focal length of 12 mm, and a total aperture of 6 mm. A syntheticfocusing algorithm was used to form images with an increased depth-of-field. The penetration depth was increased by using a linear-chirp signal spanning 15 to 65 MHz over 4 µs. Results obtained with the custom system were compared to those of the Vevo systems (40 MHz probes RMV-704 and MS-550D) in terms of sphere detection, i.e., 3D spatial resolution, and contrast-tonoise ratio (CNR). Resulting B-mode images indicated that only the linear-array transducer failed to clearly resolve the 0.2 mm spheres, which showed that the 3D spatial resolution of the singleelement and annular-array transducers was superior to that of the linear array. The single-element transducer could only detect these spheres over a narrow 1.5 mm depth-of-field, while the annular array was able to detect them to depths of at least 7 mm. For any size of the anechoic spheres, the annular array excited by a chirp-coded signal provided images of the highest contrast, with a maximum CNR of 1.8 at the focus, compared to 1.3 when using impulse excitation and 1.6 with the single-element transducer and linear array. This imaging configuration also provided CNRs above 1.2 over a wide depth range of 8 mm, while CNRs would quickly drop below 1 outside the focal zone of the other configurations.
This paper presents an adaptive synthetic-focusing scheme that, when applied to photoacoustic (PA) data acquired using an annular array, improves focusing across a greater imaging depth and enhances spatial resolution. The imaging system was based on a 40-MHz, 5-element, annular-array transducer with a focal length of 12 mm and an 800-μm diameter hole through its central element to facilitate coaxial delivery of 532-nm laser. The transducer was raster-scanned to facilitate 3D acquisition of co-registered ultrasound and PA image data. Three synthetic-focusing schemes were compared for obtaining PA A-lines for each scan location: delay-and-sum (DAS), DAS weighted with a coherence factor (DAS + CF), and DAS weighted with a sign-coherence factor (DAS + SCF). Bench-top experiments that used an 80-μm hair were performed to assess the enhancement provided by the two coherence-based schemes. Both coherence-based schemes increased the signal-to-noise ratio by approximately 10 dB. When processed using the DAS-only scheme, the lateral dimension of the hair in a PA image with 20 dB dynamic range was between 300 μm and 1 mm for imaging depth ranging from 8 to 20 mm. In comparison, the DAS + CF scheme resulted in a lateral dimension of 200 to 450 μm over the same range. The DAS + SCF synthetic focusing further improved the smallest-resolvable dimension, which was between 150 and 400 μm over the same range of imaging depth. When used on PA data obtained from a 12-day-old mouse embryo, the DAS + SCF processing improved visualization of neurovasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.