The pilot studies suggested that the proposed BCI speller could achieve a better and more stable system performance compared with the conventional P300 speller, and it is promising for achieving quick spelling in stimulus-driven BCI applications.
The aim of this study was to design a dynamically optimized steady-state visually evoked potential (SSVEP) brain-computer interface (BCI) system with enhanced performance relative to previous SSVEP BCIs in terms of the number of items selectable on the interface, accuracy, and speed. In this approach, the row/column (RC) paradigm was employed in a SSVEP speller to increase the number of items. The target is detected by subsequently determining the row and column coordinates. To improve spelling accuracy, we added a posterior processing after the canonical correlation analysis (CCA) approach to reduce the interfrequency variation between different subjects and named the new signal processing method CCA-RV, and designed a real-time biofeedback mechanism to increase attention on the visual stimuli. To achieve reasonable online spelling speed, both fixed and dynamic approaches for setting the optimal stimulus duration were implemented and compared. Experimental results for 11 subjects suggest that the CCA-RV method and the real-time biofeedback effectively increased accuracy compared with CCA and the absence of real-time feedback, respectively. In addition, both optimization approaches for setting stimulus duration achieved reasonable online spelling performance. However, the dynamic optimization approach yielded a higher practical information transfer rate (PITR) than the fixed optimization approach. The average online PITR achieved by the proposed adaptive SSVEP speller, including the time required for breaks between selections and error correction, was 41.08 bit/min. These results indicate that our BCI speller is promising for use in SSVEP-based BCI applications.
The present study proposes a hybrid brain-computer interface (BCI) with 64 selectable items based on the fusion of P300 and steady-state visually evoked potential (SSVEP) brain signals. With this approach, row/column (RC) P300 and two-step SSVEP paradigms were integrated to create two hybrid paradigms, which we denote as the double RC (DRC) and 4-D spellers. In each hybrid paradigm, the target is simultaneously detected based on both P300 and SSVEP potentials as measured by the electroencephalogram. We further proposed a maximum-probability estimation (MPE) fusion approach to combine the P300 and SSVEP on a score level and compared this approach to other approaches based on linear discriminant analysis, a naïve Bayes classifier, and support vector machines. The experimental results obtained from thirteen participants indicated that the 4-D hybrid paradigm outperformed the DRC paradigm and that the MPE fusion achieved higher accuracy compared with the other approaches. Importantly, 12 of the 13 participants, using the 4-D paradigm achieved an accuracy of over 90% and the average accuracy was 95.18%. These promising results suggest that the proposed hybrid BCI system could be used in the design of a high-performance BCI-based keyboard.
A potential limitation of a motor imagery (MI) based brain-computer interface (BCI) is that it usually requires a relatively long time to record sufficient EEG data for robust classifier training. The calibration burden during data acquisition phase will most probably cause a subject to be reluctant to use a BCI system. To alleviate this issue, we propose a novel sparse group representation model (SGRM) for improving the efficiency of MI-based BCI by exploiting the inter-subject information. Specifically, preceded by feature extraction using common spatial pattern, a composite dictionary matrix is constructed with training samples from both the target subject and other subjects. By explicitly exploiting within-group sparse and group-wise sparse constraints, the most compact representation of a test sample of the target subject is then estimated as a linear combination of columns in the dictionary matrix. Classification is implemented by calculating the class-specific representation residual based on the significant training samples corresponding to the nonzero representation coefficients. Accordingly, the proposed SGRM method effectively reduces the required training samples from the target subject due to auxiliary data available from other subjects. With two public EEG datasets, extensive experimental comparisons are carried out between SGRM and other state-of-the-art approaches. Superior classification performance of our method using 40 trials of the target subject for model calibration (Averaged accuracy = 78.2%, Kappa = 0.57 and Averaged accuracy = 77.7%, Kappa = 0.55 for the two datasets, respectively) indicates its promising potential for improving the practicality of MI-based BCI.
The start of the cue is often used to initiate the feature window used to control motor imagery (MI)-based brain-computer interface (BCI) systems. However, the time latency during an MI period varies between trials for each participant. Fixing the starting time point of MI features can lead to decreased system performance in MI-based BCI systems. To address this issue, we propose a novel correlation-based time window selection (CTWS) algorithm for MI-based BCIs. Specifically, the optimized reference signals for each class were selected based on correlation analysis and performance evaluation. Furthermore, the starting points of time windows for both training and testing samples were adjusted using correlation analysis. Finally, the feature extraction and classification algorithms were used to calculate the classification accuracy. With two datasets, the results demonstrate that the CTWS algorithm significantly improved the system performance when compared to directly using feature extraction approaches. Importantly, the average improvement in accuracy of the CTWS algorithm on the datasets of healthy participants and stroke patients was 16.72% and 5.24%, respectively when compared to traditional common spatial pattern (CSP) algorithm. In addition, the average accuracy increased 7.36% and 9.29%, respectively when the CTWS was used in conjunction with Sub-Alpha-Beta Log-Det Divergences (Sub-ABLD) algorithm. These findings suggest that the proposed CTWS algorithm holds promise as a general feature extraction approach for MI-based BCIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.