We have investigated the resistive switching behavior in stoichiometric HfO2 and oxygen-deficient HfO2−x thin films grown on TiN electrodes using reactive molecular beam epitaxy. Oxygen defect states were controlled by the flow of oxygen radicals during thin film growth. Hard X-ray photoelectron spectroscopy confirmed the presence of sub-stoichiometric hafnium oxide and defect states near the Fermi level. The oxygen deficient HfO2−x thin films show bipolar switching with an electroforming occurring at low voltages and low operating currents, paving the way for almost forming-free devices for low-power applications.
Hafnium oxide (HfO x )-based memristive devices have tremendous potential as nonvolatile resistive random access memory (RRAM) and in neuromorphic electronics. Despite its seemingly simple two-terminal structure, a myriad of RRAM devices reported in the rapidly growing literature exhibit rather complex resistive switching behaviors. Using Pt/HfO x /TiN-based metal-insulator-metal structures as model systems, it is shown that a well-controlled oxygen stoichiometry governs the filament formation and the occurrence of multiple switching modes. The oxygen vacancy concentration is found to be the key factor in manipulating the balance between electric field and Joule heating during formation, rupture (reset), and reformation (set) of the conductive filaments in the dielectric. In addition, the engineering of oxygen vacancies stabilizes atomic size filament constrictions exhibiting integer and half-integer conductance quantization at room temperature during set and reset. Identifying the materials conditions of different switching modes and conductance quantization contributes to a unified switching model correlating structural and functional properties of RRAM materials. The possibility to engineer the oxygen stoichiometry in HfO x will allow creating quantum point contacts with multiple conductance quanta as a first step toward multilevel memristive quantum devices.
We have synthesized highly oxygen deficient HfO2−x thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10 21 charge carriers per cm 3 . At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.
Articles you may be interested inIn-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells Resistive switching mechanisms relating to oxygen vacancies migration in both interfaces in Ti/HfOx/Pt memory devices Hard x-ray photoelectron spectroscopy study of the electroforming in Ti/HfO2-based resistive switching structures Appl.
Integration of functional oxides on Si substrates could open a pathway to integrate diverse devices on Si-based technology. Oxygen vacancies (Vo(··)) can strongly affect solid state properties of oxides, including the room temperature ferromagnetism (RTFM) in diluted magnetic oxides. Here, we report a systematical study on the RTFM of oxygen vacancy engineered (by Pr(3+) doping) CeO2 epitaxial thin films on Si substrates. High quality, mixed single crystalline Ce1-xPrxO2-δ (x = 0-1) solid solution films were obtained. The Ce ions in CeO2 with a fluorite structure show a Ce(4+)-dominant valence state in all films. The local crystal structures of the films were analyzed in detail. Pr doping creates both Vo(··) and PrO8-complex defects in CeO2 and their relative concentrations vary with the Pr-doping level. The RTFM properties of the films reveal a strong dependence on the relative Vo(··) concentration. The RTFM in the films initially increases with higher Pr-doping levels due to the increase of the F(+) center (Vo(··) with one occupied electron) concentration and completely disappears when x > 0.2, where the magnetic polaron concentration is considered to decline below the percolation threshold, thus long-range FM order can no longer be established. We thus demonstrate the possibility to directly grow RTFM Pr-doped CeO2 films on Si substrates, which can be an interesting candidate for potential magneto-optic or spintronic device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.