Implant treatment increasingly focuses on the reduction of treatment time and postoperative impairment. The improvement of 3D dental diagnosis by ConeBeam computed tomography allows detailed preparation for the surgical placement of dental implants under prosthetic considerations. While the first generation of implant planning software used high-contrast multislice computed tomography, software that has been specifically designed for ConeBeam computed tomography is now available. Implant placement can be performed using surgical guides or under the control of optical tracking systems. Surgical guides are more commonly used in private office owing to their availability. The accuracy for both techniques is clinically acceptable for achieving implant placement in critical anatomical indications. When using prefabricated superstructures and in flapless surgery, special abutments or an adjusted workflow are still necessary to compensate misfits of between 150 and 600 microm. The proposition to ensure proper implant placement by dentists with limited surgical experience through the use of surgical guides is unlikely to be successful, because there is also a specific learning curve for guided implant placement. Current and future development will continue to decrease the classical laboratory-technician work and will integrate the fabrication of superstructures with virtual treatment planning from the start.
The diagnostic quality of multiplanar reformations can be considered the same in both devices. Although sharpness, noise level and contrast resolution do not reach the level of CT, DVT images proved statistically not inferior for the detection of lesions which may be adequately depicted by both imaging modes.
BackgroundWithin the domain of craniomaxillofacial surgery, orthognathic surgery is a special field dedicated to the correction of dentofacial anomalies resulting from skeletal malocclusion. Generally, in such cases, an interdisciplinary orthodontic and surgical treatment approach is required. After initial orthodontic alignment of the dental arches, skeletal discrepancies of the jaws can be corrected by distinct surgical strategies and procedures in order to achieve correct occlusal relations, as well as facial balance and harmony within individualized treatment concepts. To transfer the preoperative surgical planning and reposition the mobilized dental arches with optimal occlusal relations, surgical splints are typically used. For this purpose, different strategies have been described which use one or more splints. Traditionally, these splints are manufactured by a dental technician based on patient-specific dental casts; however, computer-assisted technologies have gained increasing importance with respect to preoperative planning and its subsequent surgical transfer.Methods: In a pilot study of 10 patients undergoing orthognathic corrections by a one-splint strategy, two final occlusal splints were produced for each patient and compared with respect to their clinical usability. One splint was manufactured in the traditional way by a dental technician according to the preoperative surgical planning. After performing a CBCT scan of the patient’s dental casts, a second splint was designed virtually by an engineer and surgeon working together, according to the desired final occlusion. For this purpose, RapidSplint®, a custom-made software platform, was used. After post-processing and conversion of the datasets into .stl files, the splints were fabricated by the PolyJet procedure using photo polymerization. During surgery, both splints were inserted after mobilization of the dental arches then compared with respect to their clinical usability according to the occlusal fitting.ResultsUsing the workflow described above, virtual splints could be designed and manufactured for all patients in this pilot study. Eight of 10 virtual splints could be used clinically to achieve and maintain final occlusion after orthognathic surgery. In two cases virtual splints were not usable due to insufficient occlusal fitting, and even two of the traditional splints were not clinically usable. In five patients where both types of splints were available, their occlusal fitting was assessed as being equivalent, and in one case the virtual splint showed even better occlusal fitting than the traditional splint. In one case where no traditional splint was available, the virtual splint proved to be helpful in achieving the final occlusion.ConclusionsIn this pilot study it was demonstrated that clinically usable splints for orthognathic surgery can be produced by computer-assisted technology. Virtual splint design was realized by RapidSplint®, an in-house software platform which might contribute in future to shorten preoperative workflows fo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.