BackgroundEbola still remains as one of the most problematic infectious diseases in Africa with a high rate of mortality. Although this disease has been known for an almost half-century, there are no vaccines and drugs available in the market to treat Ebola. Zaire ebolavirus (EBOV), a single-stranded RNA virus which belongs to Filoviridae family and Mononegavirales order, is one of the virus causing Ebola. As one of seven proteins that EBOV encodes, Ebola virus nucleoprotein (EBOV NP) plays an imperative role in EBOV proliferation cycle. Therefore, the development of a new Ebola treatment can be targeted towards EBOV NP.ResultsIn this work, we screened about 190,084 natural product compounds from ZINC15 database through in silico virtual screening and flexible docking simulation. Furthermore, the bioavailability and toxicity prediction have been conducted as well. Two best ligands according to the simulation and prediction tests were progressed into the molecular dynamics simulation.ConclusionIn the end, we found that our proposed ligands, namely α-lipomycin (ZINC56874155) and 3-(((S)-1-amino-1,2,3,4-tetrahydroisoquinolin-5-yl)methyl)-5-((5-((5R,7S)-5,7-dihydroxy-3-oxodecyl)-2-hydroxyphenoxy) methyl)pyrrolo[3,4-b]pyrrol-5-ium (ZINC85628951), showed the promising results to be developed as a lead compounds for treating Ebola. Therefore, an experimental study is required to validate their inhibition activities against EBOV NP.
Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world’s population in tropical and subtropical countries. Nonstructural protein 5 (NS5) methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S-adenosyl-l-methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2′OH, resulting in S-adenosyl-l-homocysteine (SAH). The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) test. The 2 simulations were performed using Molecular Operating Environment (MOE) 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356) based on ΔGbinding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever.
Dye is an important compound in textile industry. The famous dye for coloring of textile is methylene blue. Methylene blue degradation has been difficult when carried out naturally by microorganisms. The advanced oxidative process is a promising method to degrade methylene blue using semiconductor material TiO2 and its modification. The modification catalyst of TiO2 such as TiO2-N, TiO2/zeolite-NaY and TiO2-N/zeolite-NaY. These materials were synthesized by mixing TiO2 and urea, then followed by impregnation of the mixture to zeolite-NaY as support material. The materials have been synthesized then characterized by XRD, and FTIR. Degradation of methylene blue on the synthesized materials was tested under UV light for 5, 20, 30, 40, and 50 minutes. The results showed that the diffractogram of TiO-N/zeolite-NaY and TiO2/zeolite-Y has a similar spesific peak with TiO2 and zeolite-NaY. It indicates that the impregnation process was sucessfully. TiO2/zeolite-NaY and TiO2-N/zeolite-NaY also showed the excellent activity for degrading methylene blue, which reached up to 99% for 3 hours of reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.