Background Colorectal cancer is a common malignant digestive tract tumor. This study aimed to explore the biological role and potential underlying mechanism of matrine in colorectal cancer. Methods The mRNA expression of AGRN was measured using RT‐qPCR. Cell proliferation, migration, invasion and apoptosis were determined using CCK‐8, EdU, transwell assays and flow cytometry, respectively. Xenograft tumor experiment was performed to explore the action of matrine and AGRN on tumor growth in colorectal cancer in vivo. Immunohistochemistry (IHC) assay was applied for AGRN, β‐catenin, and c‐Myc expression in the tumor tissues from mice. Results Matrine dramatically repressed cell growth and reduced the level of AGRN in colorectal cancer cells. AGRN expression was boosted colorectal cancer tissues and cells. AGRN downregulation depressed cell proliferation, migration, invasion, and enhanced cell apoptosis in colorectal cancer cells. Moreover, matrine showed the anti‐tumor effects on colorectal cancer cells via regulating AGRN expression. AGRN knockdown could inactivate the Wnt/β‐catenin pathway in colorectal cancer cells. We found that AGRN downregulation exhibited the inhibition action in the progression of colorectal cancer by modulating the Wnt/β‐catenin pathway. In addition, matrine could inhibit the activation of the Wnt/β‐catenin pathway through regulating AGRN in colorectal cancer cells. Furthermore, xenograft tumor experiment revealed that matrine treatment or AGRN knockdown repressed the development of colorectal cancer via the Wnt/β‐catenin pathway in vivo. Conclusion Matrine retarded colorectal cancer development by modulating AGRN to inactivate the Wnt/β‐catenin pathway.
Background: Endometrial carcinoma (EC) development is associated with dysregulated circular RNA profiles. The purpose of the current research is to study the role and mechanism of hsa_circ_0001610 (circ_0001610) in EC progression. Methods: circ_0001610, microRNA (miR)-646, and signal transducer and activator of transcription 3 (STAT3) expression levels were measured in EC. Functional analyses were performed using Cell Counting Kit-8, colony formation, transwell, wound healing, flow cytometry, glycolysis, and xenograft analyses. Binding association was evaluated with dual-luciferase reporter assay. Results: circ_0001610 levels were upregulated in EC samples (n = 30) and cells. circ_0001610 interference restrained cell proliferation, migration, and invasion, and promoted apoptosis. circ_0001610 downregulation constrained glycolysis through reducing glucose consumption, lactate production, and levels of adenosine triphosphate, extracellular acidification, hexokinase 2, and lactate dehydrogenase A, and increasing oxygen consumption rate. miR-646 is targeted by circ_0001610, and miR-646 inhibition attenuated interference of circ_0001610-mediated suppression of EC development. STAT3 was modulated by miR-646, and miR-646 upregulation restrained EC progression by decreasing STAT3. circ_0001610 silencing reduced STAT3 levels by sponging miR-646 and reduced the growth of xenograft tumor established by EC cells. Conclusion: circ_0001610 knockdown represses EC progression through modulating the miR-646-STAT3 axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.