Starvation enhances olfactory sensitivity that encourage animals to search for food. the molecular mechanisms that enable sensory neurons to remain flexible and adapt to a particular internal state remain poorly understood. Here, we study the roles of GABA and insulin signaling in starvationdependent modulation of olfactory sensory neuron (oSn) function in the Drosophila larva. We show that GABA B-receptor and insulin-receptor play important roles during oSn modulation. Using an OSN-specific gene expression analysis, we explore downstream targets of insulin signaling in OSNs. our results suggest that insulin and GABA signaling pathways interact within oSns and modulate oSn function by impacting olfactory information processing. We further show that manipulating these signaling pathways specifically in the OSNs impact larval feeding behavior and its body weight. these results challenge the prevailing model of oSn modulation and highlight opportunities to better understand oSn modulation mechanisms and their relationship to animal physiology.
The ability of insects to navigate toward odor sources is based on the activities of their first-order olfactory receptor neurons (ORNs). While a considerable amount of information has been generated regarding ORN responses to odorants, the role of specific ORNs in driving behavioral responses remains poorly understood. Complications in behavior analyses arise due to different volatilities of odorants that activate individual ORNs, multiple ORNs activated by single odorants, and the difficulty in replicating naturally observed temporal variations in olfactory stimuli using conventional odor-delivery methods in the laboratory. Here, we describe a protocol that analyzes Drosophila larval behavior in response to simultaneous optogenetic stimulation of its ORNs. The optogenetic technology used here allows for specificity of ORN activation and precise control of temporal patterns of ORN activation. Corresponding larval movement is tracked, digitally recorded, and analyzed using custom written software. By replacing odor stimuli with light stimuli, this method allows for a more precise control of individual ORN activation in order to study its impact on larval behavior. Our method could be further extended to study the impact of second-order projection neurons (PNs) as well as local neurons (LNs) on larval behavior. This method will thus enable a comprehensive dissection of olfactory circuit function and complement studies on how olfactory neuron activities translate in to behavior responses.
Most animals depend upon olfaction to find food, mates, and to avoid predators. An animal's olfactory circuit helps it sense its olfactory environment and generate critical behavioral responses. The general architecture of the olfactory circuit, which is conserved across species, is made up of a few different neuronal types including first-order receptor neurons, second-and third-order neurons, and local interneurons. Each neuronal type differs in their morphology, physiology, and neurochemistry. However, several recent studies have suggested that there is intrinsic diversity even among neurons of the same type and that this diversity is important for neural function. In this review, we first examine instances of intrinsic diversity observed among individual types of olfactory neurons. Next, we review potential genetic and experience-based plasticity mechanisms that underlie this diversity. Finally, we consider the implications of intrinsic neuronal diversity for circuit function. Overall, we hope to highlight the importance of intrinsic diversity as a previously underestimated property of circuit function.
We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.