Purpose
This paper aims to synthesise block copolymers (PPy-b-ENP) of pyrrole (Py) and ethoxylated nonyl phenols (ENP) via redox systems in presence of ceric ammonium nitrate (CAN) at room temperature. The initiating radical was formed on reducing organic compound which in turn initiated polymerisation to give diblock copolymers containing chain ends of ENPs and polypyrrole (Ppy). The effects of the concentration of Ce+4 salt, ENPs and Py on both the yield and electrical conductivities of corresponding polymers were studied.
Design/methodology/approach
In total, 0.1 M stock solution of CAN:100 ml 1 M HNO3 was prepared freshly (7 ml HNO3 dissolved in 100 ml water) and used in 50 ml of 0.1 M CAN solution (2.7438 g CAN dissolved in 50 ml nitric acid solution). The reducing compound (Py) was dissolved in water. Py and ENP were added slowly to the flask with vigorous stirring. The content of the flask was flushed with oxygen-free nitrogen. The resulting copolymers were characterised with spectroscopic methods like Fourier transform infrared spectroscopy and scanning electron microscope.
Findings
In this study, DMSO-slightly soluble Py copolymers were produced with ENPs. The conductivities of copolymers were found to be in the range of 10-1 to 10-4 S/cm. Soluble and processable conductive polymers were developed.
Research limitations/implications
In this study, the water solubility of ENPs diminishes the conductivity of copolymer because of its surfactant structure. When the CAN/Py ratio was increased, PPys and copolymers with both higher yield and lower conductivity values were obtained. The results indicated that solubilities and the yield of the polymers synthesised in the presence of ENP have increased considerably. ENP caused degradative chain transfer reaction to become significant compared with bimolecular termination, so the yield decreased with increasing ENP concentration about 20 g/l. Results showed that yield of the copolymers strongly depends on Ce+4 concentrations while of copolymers were measured to be 10-3 S/cm.
Practical implications
PPy-b-ENP diblock copolymers were prepared with Ce+4 as an oxidation agent in a single step.
Social implications
These slightly soluble and conductive copolymers may overcome difficulties in the applications of PPy homopolymers and open new application areas.
Originality/value
PPy-b-ENPs of lightly soluble (in DMSO) and conductive (10-2 S/cm) copolymers have been synthesised in one step. The results indicate that the surface of the copolymer is composed of well-distributed nanospheres with an average particle diameter of 35-400 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.