Papua New Guinea is a country in Oceania that hosts unique rain forests and forest ecosystems which are crucial for sequestering atmospheric carbon, conserving biodiversity, supporting the livelihood of indigenous people, and underpinning the timber market of the country. As a result of urban sprawl, agricultural expansion, and illegal logging, there has been a tremendous increase in land-use land cover (LULC) change happening in the country in the past few decades and this has triggered massive deforestation and forest degradation. However, only a few studies have ventured into quantifying the long-term trends and their associated spatial patterns—and have often presented contrasting responses. Herein, we intended to assess the extent of deforestation and the rate of urbanization that happened in the past 33 years (1987–2020) in the Bumbu river basin in Papua New Guinea using satellite imagery—for the years 1987, 2002, 2010, and 2020—and Geographic Information System (GIS) tools. On performing image classification, land use maps were developed and later compared with Google Earth’s high-resolution satellite images for accuracy assessment purposes. For probing into the spatial aspects of the land-use change issues, the study area was divided into four urban zones and four forest zones according to the four main cardinal directions centered in the urban and forest area centers of the 1987 image; subsequently, the rate of urban area expansion in each urban zone was separately calculated. From our preliminary analysis and literature survey, we observed several hurdles regarding the classification of regenerative forests and mixed pixels and gaps in LULC studies that have happened in Papua New Guinea to date. Through this communication paper, we aim to disseminate our preliminary results, which highlight a rapid increase in urban extent from 14.39 km2 in 1987 to 23.06 km2 in 2020 accompanied by a considerable decrease in forest extent from 76.29 km2 in 1987 to 59.43 km2 in 2020; this observation favors the presumption that urban and agricultural land expansion is happening at the cost of forest cover. Moreover, strategies for addressing technical issues and for integrating land-use change with various socioeconomic and environmental variables are presented soliciting feedback.
Canopy height is a fundamental parameter for determining forest ecosystem functions such as biodiversity and above-ground biomass. Previous studies examining the underlying patterns of the complex relationship between canopy height and its environmental and climatic determinants suffered from the scarcity of accurate canopy height measurements at large scales. NASA’s mission, the Global Ecosystem Dynamic Investigation (GEDI), has provided sampled observations of the forest vertical structure at near global scale since late 2018. The availability of such unprecedented measurements allows for examining the vertical structure of vegetation spatially and temporally. Herein, we explore the most influential climatic and environmental drivers of the canopy height in tropical forests. We examined different resampling resolutions of GEDI-based canopy height to approximate maximum canopy height over tropical forests across all of Malaysia. Moreover, we attempted to interpret the dynamics underlining the bivariate and multivariate relationships between canopy height and its climatic and topographic predictors including world climate data and topographic data. The approaches to analyzing these interactions included machine learning algorithms, namely, generalized linear regression, random forest and extreme gradient boosting with tree and Dart implementations. Water availability, represented as the difference between precipitation and potential evapotranspiration, annual mean temperature and elevation gradients were found to be the most influential determinants of canopy height in Malaysia’s tropical forest landscape. The patterns observed are in line with the reported global patterns and support the hydraulic limitation hypothesis and the previously reported negative trend for excessive water supply. Nevertheless, different breaking points for excessive water supply and elevation were identified in this study, and the canopy height relationship with water availability observed to be less significant for the mountainous forest on altitudes higher than 1000 m. This study provides insights into the influential factors of tree height and helps with better comprehending the variation in canopy height in tropical forests based on GEDI measurements, thereby supporting the development and interpretation of ecosystem modeling, forest management practices and monitoring forest response to climatic changes in montane forests.
Tropical forests play a significant role in regulating the average global atmospheric temperature encompassing 25 % of the carbon present in the terrestrial biosphere. However, the rapid change in climate, arising from unsustainable human practices, can significantly affect their carbon uptake capability in the future. For understanding these deviations, it is important to identify and quantify the large-scale canopy height variations arising from previous anthropogenic disturbances. With the advent of NASA GEDI spaceborne LiDAR (light detection and ranging), it is now possible to acquire three-dimensional vertical structural data of forests globally. In this study, we evaluate the applicability of GEDI for analyzing relative canopy height variations of secondary tropical forests of different age groups located across multiple geographical regions of peninsular Malaysia. The results for RH98 GEDI metric trends for the lowland and hill forests category across 4 different disturbance groups show a positive correlation between mean relative height and secondary forest ages. The consistency of these findings with previous studies in the region indicate the usefulness of GEDI to provide valuable insights into the patterns and drivers of forest height variation. Thus, this study contributes toward the operationalization of spaceborne LiDAR technology for monitoring forest disturbances and measuring biomass recovery rates and should help support large-scale sustainable forest management initiatives with respect to the tropical forests of Malaysia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.