Canopy height is a fundamental parameter for determining forest ecosystem functions such as biodiversity and above-ground biomass. Previous studies examining the underlying patterns of the complex relationship between canopy height and its environmental and climatic determinants suffered from the scarcity of accurate canopy height measurements at large scales. NASA’s mission, the Global Ecosystem Dynamic Investigation (GEDI), has provided sampled observations of the forest vertical structure at near global scale since late 2018. The availability of such unprecedented measurements allows for examining the vertical structure of vegetation spatially and temporally. Herein, we explore the most influential climatic and environmental drivers of the canopy height in tropical forests. We examined different resampling resolutions of GEDI-based canopy height to approximate maximum canopy height over tropical forests across all of Malaysia. Moreover, we attempted to interpret the dynamics underlining the bivariate and multivariate relationships between canopy height and its climatic and topographic predictors including world climate data and topographic data. The approaches to analyzing these interactions included machine learning algorithms, namely, generalized linear regression, random forest and extreme gradient boosting with tree and Dart implementations. Water availability, represented as the difference between precipitation and potential evapotranspiration, annual mean temperature and elevation gradients were found to be the most influential determinants of canopy height in Malaysia’s tropical forest landscape. The patterns observed are in line with the reported global patterns and support the hydraulic limitation hypothesis and the previously reported negative trend for excessive water supply. Nevertheless, different breaking points for excessive water supply and elevation were identified in this study, and the canopy height relationship with water availability observed to be less significant for the mountainous forest on altitudes higher than 1000 m. This study provides insights into the influential factors of tree height and helps with better comprehending the variation in canopy height in tropical forests based on GEDI measurements, thereby supporting the development and interpretation of ecosystem modeling, forest management practices and monitoring forest response to climatic changes in montane forests.
Deforestation and forest degradation lead to an increase in the level of carbon in the atmosphere and disrupted the global carbon cycle. The tropical forest has received a lot of interest since it contributes around 60% of the total global forest carbon. By enhancing carbon sink, tropical forests have a great potential in mitigating climate change. Assessing aboveground biomass (AGB) and carbon stock through field inventories is crucial for this purpose as it provides the most accurate result. The research was conducted at Danum Valley Conservation Area and INFAPRO in Sabah, Malaysia. An earlier study over 35 years ago at this site suggests that restored forests accrue AGB at twice the rate of regenerating forests, though the cause of this difference between treatments is unclear. Thus, this study will focus on three principal study sites which are restored, naturally regenerating and old-growth forests to determine the forest’s potential to sequester and store carbon in the forest ecosystem. These three sites were chosen because it is a well-established plot from the earlier inventory over the last seven years. The field measuring method is a non-destructive methodology. Tree parameters such as diameter at breast height (DBH), tree height and tree species diversity were collected for calculating AGB using a species-specific allometric equation. Results showed a positive correlation between tree species, diameter at breast height, and biomass/carbon stock across three different forest treatments. The active restoration increases up to 151% carbon stock whilst the old-growth forest increased by 34% and natural regeneration increased by 73%, which active restoration can be the best solution for forest treatment. The outcome of this study will increase the ability of forest authorities and the Malaysian government to effective monitoring of carbon stock for establishing reliable standard guidelines in measuring deforestation and forest degradation toward achieving sustainable forest management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.