Quorum sensing (QS) is a process of cell–cell communication for bacteria such as E. coli and Salmonella that cause foodborne diseases, with the production, release, and detection of autoinducer (AI) molecules that participate in the regulation of virulence genes. All of these proteins are useful in coordinating collective behavior, the expression of virulence factors, and the pathogenicity of Gram-negative bacteria. In this work, we review the natural or synthetic inhibitor molecules of QS that inactivate the autoinducer and block QS regulatory proteins in E. coli and Salmonella. Furthermore, we describe mechanisms of QS inhibitors (QSIs) that act as competitive inhibitors, being a useful tool for preventing virulence gene expression through the downregulation of AI-2 production pathways and the disruption of signal uptake. In addition, we showed that QSIs have negative regulatory activity of genes related to bacterial biofilm formation on clinical artifacts, which confirms the therapeutic potential of QSIs in the control of infectious pathogens. Finally, we discuss resistance to QSIs, the design of next-generation QSIs, and how these molecules can be leveraged to provide a new antivirulence therapy to combat diseases caused by E. coli or Salmonella.
Aim
The present investigation was aimed at isolating and identifying bacterial strains from cured vanilla beans. Additionally, the study focused on evaluating bacterial processes pertaining to the aromatic compounds production (ACP).
Methods and Results
Three bacteria were isolated from Vanilla planifolia beans, previously subjected to the curing process. According to morphological, biochemical and 16S rRNA analysis, the strains were identified as Citrobacter sp., Enterobacter sp. and Pseudomonas sp. The polygalacturonase activity (PGA) was determined using the drop, cup‐plate and DNS methods. Aromatic compounds production was analysed by cup‐plate method using FA as substrate and quantified by high performance liquid chromatography (ppm), the functional groups of vanillic acid (VA) were identified by FT‐IR and the aromatic compounds (AC) resistance was determined and reported as minimum inhibitory concentration. Citrobacter sp., Enterobacter sp. and Pseudomonas showed PGA (70·31 ± 364, 76·07 ± 12·47 and 51 ± 10·92 U ml−1 respectively), were producers of VA (3·23 ± 0·49, 324 ± 41 and 265·99 ± 11·61 ppm respectively) and were resistant to AC.
Conclusions
The Gram‐negative bacteria isolated from V. planifolia beans were responsible for ACP.
Significance and Impact of the Study
This is the first evidence for the role of Gram‐negative bacterial isolates from cured Mexican V. planifolia beans in the process related to ACP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.