In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.
Saccharomyces cerevisiae metabolism produces ethanol and other compounds during the fermentation of grape must into wine. Thousands of genes change expression over the course of a wine fermentation, allowing S. cerevisiae to adapt to and dominate the fermentation environment. Investigations into these gene expression patterns have previously revealed genes that underlie cellular adaptation to the grape must and wine environment involving metabolic specialization and ethanol tolerance. However, the majority of studies detailing gene expression patterns have occurred in controlled environments that may not recapitulate the biological and chemical complexity of fermentations performed at production scale. Here, an analysis of the S. cerevisiae RC212 gene expression program is presented, drawing from 40 pilot-scale fermentations (150 liters) using Pinot noir grapes from 10 California vineyards across two vintages. A core gene expression program was observed across all fermentations irrespective of vintage similar to that of laboratory fermentations, in addition to novel gene expression patterns likely related to the presence of non-Saccharomyces microorganisms and oxygen availability during fermentation. These gene expression patterns, both common and diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation outcomes under industry-relevant conditions. Importance This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to that observed in laboratory fermentation conditions, but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., presence of non-Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain under-characterized, raising the need for further research to understand the roles of these genes and their impact on industrial wine fermentation outcomes.
Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur nonrandomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. Here, ribosomal DNA amplicon sequencing from grape musts and RNA sequencing of eukaryotic transcripts from primary fermentations inoculated with the wine yeast Saccharomyces cerevisiae RC212 were used to profile fermentations from 15 vineyards in California and Oregon across two vintages. These data demonstrate that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing correlated with neither transcript abundance from those same organisms within the RNA sequencing data nor gene expression of the inoculated RC212 yeast strain. These data suggest that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing were not active during the primary stage of these inoculated fermentations and were not a major factor in determining RC212 gene expression. However, unique genetic signatures were detected within the ribosomal DNA amplicon and eukaryotic transcriptomic sequencing that were predictive of vineyard site and region. These signatures included S. cerevisiae gene expression patterns linked to nitrogen, sulfur, and thiamine metabolism. These genetic signatures of site offer insight into specific environmental factors to consider with respect to fermentation outcomes and vineyard site and regional wine characteristics. IMPORTANCE The wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. In this work, as in previous studies, it is demonstrated that specific bacteria and fungi are associated with individual wine regions and vineyard sites. However, this work further shows that their presence is not associated with detectable fungal gene expression during the primary fermentation or the expression of specific genes by the inoculate Saccharomyces cerevisiae strain RC212. The detected RC212 gene expression signatures associated with region and vineyard site also allowed the identification of flavor-associated metabolic processes and environmental factors that could impact primary fermentation outcomes. These data offer novel insights into the complexities and subtleties of vineyard-specific inoculated wine fermentation and starting points for future investigations into factors that contribute to regional wine distinctiveness.
In wine fermentations, the metabolic activity of both Saccharomyces cerevisiae and non-Saccharomyces organisms impact wine chemistry. Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur non-randomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. We used ribosomal DNA amplicon sequencing of grape must and RNA sequencing of primary fermentations to profile fermentations from 15 vineyards in California and Oregon across two vintages. We find that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing did not correlate with transcript abundance from those organisms within the RNA sequencing data, suggesting that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing are not active during these inoculated fermentations. Additionally, we detect genetic signatures of vineyard site and region during fermentation that are predictive for each vineyard site, identifying nitrogen, sulfur, and thiamine metabolism as important factors for distinguishing vineyard site and region.ImportanceThe wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. We show that while the presence of microbial DNA is associated with wine region and vineyard site, the presence of microbial DNA is not associated with gene expression of those microorganisms during fermentation. We further show that detected gene expression signatures associated with wine region and vineyard site provide a means to address differences in fermentations that may drive regional distinctiveness.
Background Dietary interventions are likely tools for modulation of the gut microbiota but the large inter-individual variability in gut microbiota composition leads to different host responsiveness and the impact of a particular food cannot be assessed. In contrast, in vitro fermentation models allow characterization of the fecal microbiota when fermenting a large number of different foods. Furthermore, cooking methods also directly influence the effects of food on gut microbiota composition. The aim of this study was to investigate the gut microbiota growing on representative foods of the Mediterranean and Western diets as well as the influence of cooking methods using in vitro fermentations. Results We performed in vitro digestions and fermentations of 55 foods, raw or cooked using up to 5 cooking methods, for a total of 159 combinations, employing fecal material from three healthy adults as inoculum. The composition of the bacterial communities was determined by sequencing the 16S rRNA gene. Foods derived from plants or animals had significantly different impacts on the abundances of bacterial taxa. Animal and vegetable fats, fish and dairy products led to the greatest shifts in microbial composition. Specifically, an increase in the beneficial bacteria Faecalibacterium, Blautia and Roseburia was identified in animal and vegetable fats. However, butter, dairy products and fish also resulted in higher abundances of Lachnoclostridium, which has been associated to several diseases. With respect to cooking methods, only frying and roasting had strong and common effects across all food categories. In general, fried foods showed more differences than other cooking methods, and Ruminococcus was particularly responsive to the cooking method employed. Conclusions Despite substantial differences in baseline microbiota composition, some shared effects were detected across the three analyzed individuals, such as the substantial impact of high-fat foods on the abundance of health-relevant bacteria. Cooking methods effects on the gut microbiota resulted to be highly individualized and food-dependent, making them challenging to investigate and integrate into personalized diet. Further characterization of the responses of the fermentative microbiota to food-cooking method combinations will enable the refinement of dietary interventions aimed at gut microbiota modulation, paving the way towards personalized nutrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.