Edible coatings have potential to reduce postharvest losses of fruit such as tomato. In this study, the effects of nanolaminate coatings incorporated with extracts of Flourensia cernua, an endemic plant of the arid and semiarid regions of Mexico, has been investigated. Ethanol extracts of F. cernua (FcE) were prepared and incorporated into polyelectrolyte solutions of alginate and chitosan. The nanolaminates were characterized by determining the zeta potential, contact angle and water vapor and oxygen permeabilities. Shelf-life analyses (20°C for 15 d) were carried out with uncoated fruit (UCF), nanolaminate coating (NL) and nanolaminate coating with FcE (NL + FcE). Physicochemical analyses, gas exchange rates of O 2 and CO 2 and ethylene production, as well as microbiological analyses of treated fruit were measured. Zeta potential and contact angle measurements confirmed the successful assembly of successive nanolayers of alginate and chitosan, as well as those with F. cernua. The nanolaminate coatings resulted in decreased permeabilities to water and O 2. The best treatment of NL + FcE, extended the shelf-life of fruit by reducing weight loss and microbial growth, reducing gas exchange and ethylene production, and maintaining firmness and color. The NL + FcE treatment are an alternative to extend the shelf-life of tomato fruit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.