BackgroundEnvironmental sampling based on boot swabs and/or liquid manure samples is an upcoming strategy for the identification of paratuberculosis (paraTB) positive herds, but only limited data are available regarding the diagnostic performance of molecular detection methods (qPCR) versus faecal culture (FC) for this purpose. In the present study, the test characteristics of two different qPCR protocols (A and B) and a standardized FC protocol, for the detection of Mycobacterium avium subsp. paratuberculosis in boot swabs and liquid manure samples were evaluated.ResultsIn 19 paraTB unsuspicious and 58 paraTB positive herds boot swabs and liquid manure were sampled simultaneously and analyzed in three different diagnostic laboratories. Using boot swabs and liquid manure, a substantial to excellent accordance was found between both qPCRs, for boot swabs also with culture, while for liquid manure the detection rate of culture was decreased after prolonged storage at −20 °C. The quantitative results of both qPCR methods correlated well for the same sample and also for boot swabs and liquid manure from the same herd. When cut-off threshold cycle (CT-)-values were applied as recommended by the manufacturers, herd level specificity (Sp) of qPCR B was below 100% for boot swabs and for both qPCRs for liquid manure. A decreased herd level sensitivity was encountered after adjustment of Sp to 100% and re-calculation of the cut-off CT-values.ConclusionsqPCR is equally suitable as bacterial culture for the detection of Mycobacterium avium subsp. paratuberculosis in boot swabs and liquid manure samples. Both matrices represent easily accessible composite environmental samples which can be tested with reliable results. The data encourage qPCR testing of composite environmental samples for paraTB herd diagnosis.
SUMMARY Environmental samples are a cost-saving and easy-to-use approach to diagnose paratuberculosis at the herd level. Detailed knowledge concerning its uncertainties in herds with a low prevalence of Mycobacterium avium spp. paratuberculosis (MAP) is required to design sampling strategies in control programmes. This study aimed to calculate a threshold level of the apparent within-herd prevalence (WHPapp) as determined by individual mycobacterial cultivation (faecal culture; FC) of all cows thus allowing the detection of a herd as MAP-positive at a certain probability level (P d). Out of 200 environmental samples taken twice from five predefined locations in a barn, 25 were positive by FC and 60 were positive by a quantitative real-time PCR method (qPCR). A logistic regression model was used to calculate the WHPapp threshold of detection. For 50% P d, a WHPapp threshold of 2.9% was calculated for the combination of three samples (milking area, main cow alleyways, holding pen) tested simultaneously both by FC and qPCR. The threshold increased to 6.2% for 90% P d. Repeated environmental sampling did not reduce the WHPapp threshold. Depending on the particular needs for prevalence estimation or in control programmes (single or repeated sampling) the provided WHPapp thresholds at different P d will enable decisions to be made about various sampling strategies.
The objective of the study was to assess the value of quantitative multiplex real-time PCR examination of bulk tank milk samples for bovine mastitis pathogens as a tool for herd level diagnosis. Using a logistic regression model, this study is aimed at calculating the threshold level of the apparent within-herd prevalence as determined by quarter milk sample cultivation of all lactating cows, thus allowing the detection of a herd positive for a specific pathogen within certain probability levels. A total of 6,335 quarter milk samples were collected and cultured from 1,615 cows on 51 farms in Germany. Bulk tank milk samples were taken from each farm and tested by bacterial culture as well as the commercial PCR assay Mastit 4A (DNA Diagnostic A/S, Risskov, Denmark) identifying Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus agalactiae, and Streptococcus uberis. In addition, PCR was performed on pooled herd milk samples containing milk aliquots from all lactating cows in each of the 51 herds. Only 1 out of the 51 herds was found PCR positive for Streptococcus agalactiae in bulk tank and pooled herd milk samples, and cultured quarter milk samples. Spearman's rank correlations between the cycle threshold value of bulk tank milk PCR and the apparent within-herd prevalence were calculated in regard to Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis. For these pathogens, significant correlations were found. If 1 bulk tank milk sample per herd was tested, the estimated within-herd prevalence thresholds for 90% probability of detection were 27.6% for Staphylococcus aureus, 9.2% for Streptococcus dysgalactiae, and 13.8% for Streptococcus uberis on the cow level. On the quarter level, the within-herd prevalence had to be at least 32.6% for Staphylococcus aureus, 1.7% for Streptococcus dysgalactiae, and 4.3% for Streptococcus uberis to detect a herd as positive using a single bulk milk sample. The results indicate that mastitis pathogens in bulk tank milk can be identified by the applied PCR assay. Bulk tank milk examination is not a reliable tool for the identification of the named pathogens by single testing, but might be a valuable monitoring tool when used frequently with repeated testing. Furthermore, this approach could be a useful monitoring tool for detecting new pathogen occurrence in the herd.
On-farm environmental sampling is an effective method for herd-level diagnosis of Mycobacterium avium ssp. paratuberculosis (MAP) infection and between-herd prevalence estimation. So far, no prevalence study enrolling important livestock-farming regions has been conducted. As the structure of dairy farming differs between main livestock-farming regions in Germany, our objective was to assess the between-herd prevalence of paratuberculosis for these regions in a standardized approach. Methods: In total, 457 randomly selected dairy farms from three regions of Germany (North: 183, East: 170, South: 104) were sampled between 2017 and 2019. Environmental samples (boot-swabs, aggregate feces and/or liquid manure samples) were cultured and analyzed using an IS900-qPCR for MAP determination. Of the 457 selected farms, 94 had at least one MAP-positive environmental sample with significant differences between regions regarding the apparent (North: 12.0%, East: 40.6%, South: 2.9%) or corrected true (North: 14.8%, East: 50.1%, South: 3.6%) between-herd prevalence. In conclusion, regional differences of between-herd prevalence of paratuberculosis are substantial in Germany, indicating the need for control approaches with different aims. Taking into account regional MAP prevalence, MAP-control programs should focus on on-farm prevalence reduction or on mitigating the risk of between-herd transmission, depending on region.
The Thuringian Johne’s Disease (JD) Control Program provides a voluntary approach to JD control in Thuringia, a federal state of Germany. The program has three objectives: reduce the level of infection when present; reduce the spread of JD to uninfected herds; and facilitate the certification and protection of herds that are non-suspect with respect to JD. The program offers pathways for the management of affected herds and for certification of herds with continuing negative tests. After the control stage (CS), a certification stage of at least 3 consecutive years with continuing negative results in the annual whole-herd test has to be passed until a herd can be certified as ‘non-suspect’ with respect to JD. This study focused on calf mortality in relation to JD herd status. In a longitudinal study, the association of annual calf mortality rate of a total of 93 dairy herds (13 ‘non-suspect’; 26 in control stage; 54 not enrolled) over 10 consecutive years with JD herd status was investigated using a generalized mixed linear model with repeated measures. Non-suspect herds had a lower calf mortality rate compared with other farms. We conclude that establishing JD control measures lowers the calf mortality rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.