IntroductionWhen solving multi-objective combinatorial optimization problems using a search algorithm without a priori information, the result is a Pareto front. Selecting a solution from it is a laborious task if the number of solutions to be analyzed is large. This task would benefit from a systematic approach that facilitates the analysis, comparison and selection of a solution or a group of solutions based on the preferences of the decision makers. In the last decade, the research and development of algorithms for solving multi-objective combinatorial optimization problems has been growing steadily. In contrast, efforts in the a posteriori exploration of non-dominated solutions are still scarce.MethodsThis paper proposes an abstract framework based on hierarchical clustering in order to facilitate decision makers to explore such a Pareto front in search of a solution or a group of solutions according to their preferences. An extension of that abstract framework aimed at addressing the bi-objective Next Release Problem is presented, together with a Dashboard that implements that extension. Based on this implementation, two studies are conducted. The first is a usability study performed with a small group of experts. The second is a performance analysis based on computation time consumed by the clustering algorithm.ResultsThe results of the initial empirical usability study are promising and indicate directions for future improvements. The experts were able to correctly use the dashboard and properly interpret the visualizations in a very short time. In the same direction, the results of the performance comparison highlight the advantage of the hierarchical clustering-based approach in terms of response time.DiscussionBased on these excellent results, the extension of the framework to new problems is planned, as well as the implementation of new validity tests with expert decision makers using real-world data.
Los procesos de negocio exigen tomar decisiones rápidas para lograr la adaptación constante a los cambios en búsqueda de mejorar el desempeño y aprovechar las oportunidades. Una posibilidad es resolver el proceso computacionalmente. Para ello es necesario producir analíticas que transformen los datos en conocimiento para la toma de decisiones. Existen varios tipos de analíticas, en este trabajo se introduce una línea de investigación enfocada en la analítica prescriptiva, como nivel más avanzado, capaz de calcular acciones a ser ejecutadas en el momento (decisiones operativas) o en el futuro (decisiones tácticas para corto y mediano plazo, decisiones estratégicas para largo plazo) para lograr un objetivo deseado. El cálculo de las acciones involucra el procesamiento del flujo de eventos del negocio en forma de datastreams, la aplicación de técnicas y algoritmos de Soft Computing e Inteligencia Computacional y, derivado de la necesidad de bajos tiempos de respuesta, el empleo de Computación de Alto Desempeño.
In search-based software engineering (SBSE), software engineers usually have to select one among many quasi-optimal solutions with different values for the objectives of interest for a particular problem domain. Because of this, a metaheuristic algorithm is needed to explore a larger extension of the Pareto optimal front to provide a bigger set of possible solutions. In this regard the Fuzzy Multi-Objective Particle Swarm Optimization (FMOPSO), a novel a posteriori algorithm, is proposed in this paper and compared with other state-of-the-art algorithms. The results show that FMOPSO is adequate for finding very detailed Pareto Fronts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.