This paper is the first of a two-part paper presenting a multiperiod generalized network flow model of the integrated energy system in the United States. Part I describes the modeling approach used to evaluate the economic efficiencies of the system-wide energy flows, from the coal and natural gas suppliers to the electric load centers. Under the proposed problem formulation, fuel supply and electricity demand nodes are connected via a transportation network and the model is solved for the most efficient allocation of quantities and corresponding prices. The methodology includes the physical, economic, and environmental aspects that characterize the different networks. Part II of this paper provides numerical results that demonstrate the application of the model.
Abstract-A new model to deal with the short-term generation scheduling problem for hydrothermal systems is proposed. Using genetic algorithms (GAs), the model handles simultaneously the subproblems of short-term hydrothermal coordination, unit commitment, and economic load dispatch. Considering a scheduling horizon period of a week, hourly generation schedules are obtained for each of both hydro and thermal units. Future cost curves of hydro generation, obtained from long and mid-term models, have been used to optimize the amount of hydro energy to be used during the week. In the genetic algorithm (GA) implementation, a new technique to represent candidate solutions is introduced, and a set of expert operators has been incorporated to improve the behavior of the algorithm. Results for a real system are presented and discussed.
Wind power generation has presented an important development around the world. However, its integration into electrical systems presents numerous challenges due to the variable nature of the wind. Therefore, to maintain an economical and reliable electricity supply, it is necessary to accurately predict wind generation. The Wind Power Prediction Tool (WPPT) has been proposed to solve this task using the power curve associated with a wind farm. Recurrent Neural Networks (RNNs) model complex non-linear relationships without requiring explicit mathematical expressions that relate the variables involved. In particular, two types of RNN, Long Short-Term Memory (LSTM) and Echo State Network (ESN), have shown good results in time series forecasting. In this work, we present an LSTM+ESN architecture that combines the characteristics of both networks. An architecture similar to an ESN is proposed, but using LSTM blocks as units in the hidden layer. The training process of this network has two key stages: (i) the hidden layer is trained with a descending gradient method online using one epoch; (ii) the output layer is adjusted with a regularized regression. In particular, the case is proposed where Step (i) is used as a target for the input signal, in order to extract characteristics automatically as the autoencoder approach; and in the second stage (ii), a quantile regression is used in order to obtain a robust estimate of the expected target. The experimental results show that LSTM+ESN using the autoencoder and quantile regression outperforms the WPPT model in all global metrics used.
This paper presents a multiperiod generalised network flow model used to analyse the economic interdependencies of integrated energy systems comprising the electric network and the various fuel supply and delivery systems in a medium term operational time frame. By using a network flow programming model, one can take advantage of much faster solution procedures than standard linear programming techniques; an issue of importance considering the dimensionality of such integrated systems. The nodal prices that are obtained as a byproduct of the optimisation algorithm provide a way to analyse the economic interdependencies between the various fuel networks and the electric network. A numerical example is presented to highlight the benefits of the methodology and illustrate how nodal prices in the electric network are influenced by the dynamics of the various fuel networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.