In an attempt to enhance the potential of gamma titanium aluminide intermetallic alloy as a biomaterial, its surface characteristics were successfully modified using a calcium and phosphorous rich electrolyte through the application of plasma electrolytic oxidation. Scanning electron microscopy and atomic force microscopy were used to characterize the morphology and topographical features of the resulting coating while X-ray diffraction and energy dispersive spectroscopy were used to determine the surface oxide composition. The mechanical properties of the surface coating were characterized by nanoindentation studies. The results observed show the formation of a submicron scale porous structure and a concomitant increase in the surface roughness. The surface oxide was composed of rutile and anatase phases. Composition gradients of Ca and P were also present which can possibly enhance the biomaterial application potential of this treated surface. Nanoindentation measurements indicate the formation of a fairly compact oxide during the process.
Ti–48Al–2Cr–2Nb (at.%) (γ-TiAl), a gamma titanium aluminide alloy originally designed for aerospace applications, appears to have excellent potential as implant material. Thermal treatment of γ-TiAl renders this alloy extremely corrosion resistant in vitro, which could improve its biocompatibility. In this study, the surface oxides produced by thermal oxidation (at 500°C, and at 800°C for 1 h in air) on γ-TiAl were characterized by X-ray photoelectron spectroscopy (XPS). hFOB 1.19 cell adhesion on thermally oxidized γ-TiAl was examined in vitro by a hexosaminidase assay, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) after 1, 7 and 14 days. Ti–6Al–4V surfaces were used for comparison. Hexosaminidase assay data and CLSM analysis of focal contacts and cytoskeleton organization showed no differences in cell attachment on autoclaved and both heat-treated γ-TiAl surfaces at the different time points. SEM images showed well organized multi-layers of differentiated cells adhered on thermally oxidized γ-TiAl surfaces at day 14. Unexpectedly, thermally oxidized Ti–6Al–4V surfaces oxidized at 800°C exhibited cytotoxic effects on hFOB 1.19 cells. Our results indicate that thermal oxidation of γ-TiAl seems to be a promising method to generate highly corrosion resistant and biocompatible surfaces for implant applications.
The aim of this work was production of tetraethoxysilane (TEOS) plasma polymerized thin films and optimization of their physical-chemical characteristic for sensor development. The films were analyzed using several techniques. It was possible to produce composites (graphite clusters imbibed by silicon oxide film) made from only one reactant (TEOS). Deposition rate can vary significantly, reaching a maximum of 30 nm/min; cluster formation and their size widely depending on deposition parameters. The film surface was hydrophobic but can be wetted by organic compounds, probably due to carbon radicals. These films are good candidates for sensor development.
This work aims to obtain plasma thin film composites with hydrophobic/hydrophilic alternated regions, which are useful for the production of miniaturized mixers. These regions were acquired by two different strategies: either the codeposition of TEOS and HFE plasma thin films or the exposition of TEOS plasma films to ultraviolet radiation (UVA and UVC). These films were characterized by several chemical and physical techniques. The refractive indexes vary from 1.4 to 1.7; infrared and photoelectron spectroscopy detect Si-O-Si and CHn species. Silicone-like structures with high or low number of amorphous carbon microparticles and with fluorinated organic clusters were produced. Cluster dimensions were in the 1-5 mm range and they are made of graphite or COF (carbon/oxygen/fluorine) compounds. Scanning electron and optical microscopy showed rough surfaces. Water contact angles were 90º; however, for TEOS films that value changed after 6 hr of UVC exposure. Moreover, after UV exposure, organic polar compounds could be adsorbed in those films and water was not. The passive mixer performance was simulated using the FemLab 3.2® program and was tested with 20 nm thick films on a silicon wafer, showing the capacity of these films to be used in such devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.