Ti–48Al–2Cr–2Nb (at.%) (γ-TiAl), a gamma titanium aluminide alloy originally designed for aerospace applications, appears to have excellent potential as implant material. Thermal treatment of γ-TiAl renders this alloy extremely corrosion resistant in vitro, which could improve its biocompatibility. In this study, the surface oxides produced by thermal oxidation (at 500°C, and at 800°C for 1 h in air) on γ-TiAl were characterized by X-ray photoelectron spectroscopy (XPS). hFOB 1.19 cell adhesion on thermally oxidized γ-TiAl was examined in vitro by a hexosaminidase assay, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) after 1, 7 and 14 days. Ti–6Al–4V surfaces were used for comparison. Hexosaminidase assay data and CLSM analysis of focal contacts and cytoskeleton organization showed no differences in cell attachment on autoclaved and both heat-treated γ-TiAl surfaces at the different time points. SEM images showed well organized multi-layers of differentiated cells adhered on thermally oxidized γ-TiAl surfaces at day 14. Unexpectedly, thermally oxidized Ti–6Al–4V surfaces oxidized at 800°C exhibited cytotoxic effects on hFOB 1.19 cells. Our results indicate that thermal oxidation of γ-TiAl seems to be a promising method to generate highly corrosion resistant and biocompatible surfaces for implant applications.
The mesentery, a newly minted organ, plays various anatomical and physiological roles during animal development. In echinoderms, and particularly in members of the class Holothuroidea (sea cucumbers) the mesentery plays an additional unique role: it is crucial for the process of intestinal regeneration. In these organisms, a complete intestine can form from cells that originate in the mesentery. In this review, we focus on what is known about the changes that take place in the mesentery and what has been documented on the cellular and molecular mechanisms involved. We describe how the events that unfold in the mesentery result in the formation of a new intestine.
The ability to culture different cell types is essential for answering many questions in developmental and regenerative biology. Studies in marine organisms, in particular echinoderms, have been limited by the lack of well-described cellular culture systems. Here we describe a cell culture system, for normal or regenerating holothurian cells, that allows cell characterization by immunohistochemistry and scanning electron microscopy. These cell cultures can now be used to perform multiple types of experiments in order to explore the cellular, biochemical, and genomic aspects of echinoderm regenerative properties.
Interfacial surface properties, both physical and chemical, are known to play a critical role in achieving longterm stability of cell−biomaterial interactions. Novel bone tissue engineering technologies, which provide a suitable interface between cells and biomaterials and mitigate aseptic osteolysis, are sought and can be developed via the incorporation of nanostructured materials. In this sense, engineered nanobased constructs provide an effective interface and suitable topography for direct interaction with cells, promoting faster osseointegration and anchoring. Therefore, herein we have investigated the surface functionalization, biocompatibility, and effect of cellulose-nanodiamond conjugates on osteoblast proliferation and differentiation. Cellulose nanocrystals (CNC) were aminated through a 3aminopropyltriethyoxysilane (APTES) silylation, while nanodiamonds (ND) were treated with a strong acid oxidation reflux, as to produce carboxyl groups on the surface. Thereafter, the two products were covalently joined through an amide linkage, using a common bioconjugation reaction. Human fetal osteoblastic cells (hFOB) were seeded for 7 days to investigate the in vitro performance of the cellulose-nanodiamond conjugates. By employing immunocytochemistry, the bone matrix expression of osteocalcin (OC) and bone sialoprotein (BSP) was analyzed, demonstrating the viability and capacity of osteoblasts to proliferate and differentiate on the developed composite. These results suggest that cellulose-nanodiamond composites, which we call oxidized biocompatible interfacial nanocomposites (oBINC), have the potential to serve as a biointerface material for cell adhesion, proliferationand differentiation because of their osteoconductive properties and biocompatibility; furthermore, they show promising applications for bone tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.