The phycoerythrin-deficient strain (green phenotype) of Hypnea musciformis (Rhodophyta) originated from a green branch, which had arisen as a spontaneous mutation in a wild plant (brown phenotype) collected from the Brazilian coast. The present study describes the growth responses to irradiance, photoperiod and temperature variations, pigment contents, and photosynthetic characteristics of the brown and green strains of H. musciformis. The results showed that growth rates increased as a function of irradiance (up to 40 μmol photons m −2 s −1 ) but, with further increase in irradiance (from 40 to 120 μmol photons m −2 s −1 ), became light-saturated and remained almost unchanged. The highest growth rates of the brown and green strains were observed in temperatures of 20-25°C under long (14:10 h LD) and short (10:14 h LD) photoperiods. The brown strain had higher growth rates than the green strain in the short photoperiod, which could be related to the high concentrations of phycobiliproteins. Phycoerythrin was not detected in the green strain. The brown strain had higher concentrations of allophycocyanin and phycoerythrin in the short photoperiod while the green strain had higher concentrations of phycocyanin. The brown strain presented higher photosynthetic efficiency (α), and lower saturation parameter (I k ) and compensation irradiance (I c ) than the green strain. The brown strain exhibited the characteristics of shade-adapted plants, and its higher value of photosynthetic efficiency could be attributed to the higher phycoerythrin concentrations. Results of the present study indicate that both colour strains of H. musciformis could be selected for aquaculture, since growth rates were similar (although in different optimal light conditions), as the green strain seems to be adapted to higher light levels than the brown strain. Furthermore, these colour strains could be a useful experimental system to understand the regulation of biochemical processes of photosynthesis and metabolism of light-harvesting pigments in red algae.
As the effects of the Global Climate Changes on the costal regions of Central and South Americas advance, there is proportionally little research being made to understand such impacts. This commentary puts forward a series of propositions of strategies to improve performance of Central and South American science and policy making in order to cope with the future impacts of the Global Climate Changes in their coastal habitats.
Populations of the marine benthic red macroalgae Hypnea musciformis and Hypnea pseudomusciformis along the Atlantic and Pacific Oceans were tested for phylogeographic structure using the DNA barcode COI‐5P combined with rbcL for the construction of the phylogenetic tree. Strong patterns of genetic structure were detected across 210 COI‐5P DNA sequences, and 37 COI‐5P haplotypes were found, using multiple statistical approaches. Hypnea musciformis was found in the Northeast and Northwest Atlantic, the Mediterrean Sea, Namibia, and along the Pacific coast of Mexico. Two new putative species were detected, Hypnea sp. 1 in the Caribbean Sea and Hypnea sp. 2 in the Dominican Republic. Three distinct marine phylogeographic provinces were recognized in the Southern Hemisphere for H. pseudomusciformis: Uruguay, South‐Southeast Brazil, and Northeast Brazil. The degree of genetic isolation and distinctness among these provinces varied considerably. The Uruguay province was the most genetically distinct, as characterized by four unique haplotypes not shared with any of the Brazilian populations. Statistically significant results support both, isolation by distance and isolation by environment hypotheses, explaining the formation and mantainance of phylogeographic structuring along the Uruguay‐Brazil coast. Geographic, taxonomic and molecular marker concordances were found between our H. pseudomusciformis results and published studies. Furthermore, our data indicate that the Hawaiian introduced populations of H. musciformis contain Hypnea sp. 1 haplotypes, the current known distribution of which is restricted to the Caribbean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.