This paper investigates a potential application of hard-to-recycle plastic waste as polymeric addition in high strength concrete, with a focus on the potential to mitigate heat-induced concrete spalling and the consequent effects on the mechanical properties. The waste corresponds to soft and hard plastic, including household polymers vastly disposed of in landfills, although technically recyclable. Mechanical and physical properties, cracking, mass loss, and the occurrence of spalling were assessed in high strength concrete samples produced with either plastic waste or polypropylene fibers after 2-h exposure to 600 °C. The analysis was supported by Scanning Electron Microscopy and X-Ray Computed Tomography images. The plastic waste is composed of different polymers with a thermal degradation between 250 to 500 °C. Polypropylene (PP) fibers and plastic waste dispersed in concrete have proved to play an essential role in mitigating heat-induced concrete spalling, contributing to the release of internal pressure after the polymer melting. The different morphology of plastic waste and polypropylene fibers leads to distinct mechanisms of action. While the vapor pressure dissipation network originated by polypropylene fibers is related to the formation of continuous channels, the plastic waste seems to cause discontinuous reservoirs and fewer damages into the concrete matrix. The incorporation of plastic waste improved heat-induced concrete spalling performance. While 6 kg/m3 of plastic increased the mechanical performance after exposure to high temperature, the incorporation of 3 kg/m3 resulted in mechanical properties comparable to the reference concrete.
The aim of this research was to investigate the effects of wood species, particle treatments and mix proportion on the physical (density) and mechanical (compressive strength and dynamicmodulus of elasticity) properties of cement-wood composites. Different mix proportions were investigated, based on the cement: wood ratio of 0.3:0.7, in volume, with Pinus elliottii and Eucalyptus grandis sawdust percentages of 0-100, 25-75, 50-50, 75-25 or 100-0. Sawdust particles were pre-treated with either lime or cement coating to improve cement and wood compatibility. Results show that wood species, particle treatments and mix proportions may influence the physical and mechanical properties of cement-wood composites. In general, results confirm that Eucalyptus sawdust and cement are naturally compatible and do not require any previous particle treatment to avoid compatibility problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.