Sporothrix schenckii, now named the S. schenckii species complex, has largely been known as the etiological agent of sporotrichosis, which is an acute or chronic subcutaneous mycosis of humans and other mammals. Gene sequencing has revealed the following species in the S. schenckii complex: Sporothrix albicans, Sporothrix brasiliensis, Sporothrix globosa, Sporothrix luriei, Sporothrix mexicana and S. schenckii. The increasing number of reports of Sporothrix infection in immunocompromised patients, mainly the HIV-infected population, suggests sporotrichosis as an emerging global health problem concomitant with the AIDS pandemic. Molecular studies have demonstrated a high level of intraspecific variability. Components of the S. schenckii cell wall that act as adhesins and immunogenic inducers, such as a 70-kDa glycoprotein, are apparently specific to this fungus. The main glycan peptidorhamnomannan cell wall component is the only O-linked glycan structure known in S. schenckii. It contains an α-mannobiose core followed by one α-glucuronic acid unit, which may be mono- or di-rhamnosylated. The oligomeric structure of glucosamine-6-P synthase has led to a significant advance in the development of antifungals targeted to the enzyme's catalytic domain in S. schenckii.
Biofilms of Candida albicans, Candida parapsilosis, Candida glabrata and Candida tropicalis are associated with high indices of hospital morbidity and mortality. Major factors involved in the formation and growth of Candida biofilms are the chemical composition of the medical implant and the cell wall adhesins responsible for mediating Candida–Candida, Candida–human host cell and Candida–medical device adhesion. Strategies for elucidating the mechanisms that regulate the formation of Candida biofilms combine tools from biology, chemistry, nanoscience, material science and physics. This review proposes the use of new technologies, such as synchrotron radiation, to study the mechanisms of biofilm formation. In the future, this information is expected to facilitate the design of new materials and antifungal compounds that can eradicate nosocomial Candida infections due to biofilm formation on medical implants. This will reduce dissemination of candidiasis and hopefully improve the quality of life of patients.
Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are able to form biofilms on virtually any biomaterial implanted in a human host. Biofilms are a primary cause of mortality in immunocompromised and hospitalized patients, as they cause recurrent and invasive candidiasis, which is difficult to eradicate. This is due to the fact that the biofilm cells show high resistance to antifungal treatments and the host defense mechanisms, and exhibit an excellent ability to adhere to biomaterials. Elucidation of the mechanisms of antifungal resistance in Candida biofilms is of unquestionable importance; therefore, this review analyzes both the chemical composition of biomaterials used to fabricate the medical devices, as well as the Candida genes and proteins that confer drug resistance.
Sporothrix schenckii is the etiological agent of sporotrichosis, a subcutaneous mycosis and an emerging disease in immunocompromised patients. Adherence to target cells is a prerequisite for fungal dissemination and systemic complications. However, information on the cell surface components involved in this interaction is rather scarce. In this investigation, the extraction of isolated cell walls from the yeast phase of S. schenckii with SDS and separation of proteins by SDS-PAGE led to the identification of a periodic acid-Schiff (PAS)-reacting 70 kDa glycoprotein (Gp70) that was purified by elution from electrophoresis gels. The purified glycopeptide exhibited a pI of 4.1 and about 5.7% of its molecular mass was contributed by N-linked glycans with no evidence for O-linked oligosaccharides. Confocal analysis of immunofluorescence assays with polyclonal antibodies directed towards Gp70 revealed a rather uniform distribution of the antigen at the cell surface with no distinguishable differences among three different isolates. Localization of Gp70 at the cell surface was confirmed by immunogold staining. Gp70 seems specific for S. schenckii as no immunoreaction was observed in SDS-extracts from other pathogenic and non-pathogenic fungi. Yeast cells of the fungus abundantly adhered to the dermis of mouse tails and the anti-Gp70 serum reduced this process in a concentration-dependent manner. Results are discussed in terms of the potential role of Gp70 in the host-pathogen interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.