BackgroundCampylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus.ObjectivesThe aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus.MethodsCampylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA).ResultsThe results obtained showed that the eight strains of C. jejuni, including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated.ConclusionsThis work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA, cdtB and cdtC genes.
Campylobacter fetus is an important venereal pathogen of cattle that causes infertility and abortions. It is transmitted during mating, and it travels from the vagina to the uterus; therefore, an important cell type that interacts with C.fetus are endometrial epithelial cells. Several virulence factors have been identified in the genome of C.fetus, such as adhesins, secretion systems, and antiphagocytic layers, but their expression is unknown. The ability of C.fetus to invade human epithelial cells has been demonstrated, but the ability of this microorganism to infect bovine endometrial epithelial cells has not been demonstrated. Bovine endometrial epithelial cells were isolated and challenged with C.fetus. The presence of C.fetus inside the endometrial epithelial cells was confirmed by the confocal immunofluorescence. C.fetus was not internalized when actin polymerization was disturbed, suggesting cytoskeleton participation in an internalization mechanism. To evaluate the intracellular survival of C.fetus, a gentamicin protection assay was performed. Although C.fetus was able to invade epithelial cells, the results showed that it did not have the capacity to survive in the intracellular environment. This study reports for the first time, the ability of C.fetus to invade bovine endometrial epithelial cells, and actin participation in this phenomenon.
Mastitis in goats is mainly caused by coagulase-negative Staphylococcus (CNS). The identification methods for this group are based on evaluating the expression of phenotypic characteristics such as the ability to metabolize various substrates; however, this is disadvantageous as these methods are dependent on gene expression. In recent years, genotyping methods such as the Multiple Locus Variable-Number Tandem Repeat Analysis (MLVA) and gene identification have been useful for epidemiological study of several bacterial species. To develop a genotyping method, the genome sequence of Staphylococcus chromogenes MU970 was analysed. The analysis showed nine virulence genes described in Staphylococcus aureus. The MLVA was developed using four loci identified in the genome of S. chromogenes MU970. This genotyping method was examined in 23 strains of CNS isolated from goat mastitis. The rate of discrimination for MLVA was 0.8893, and the highest rates of discrimination per the index of Simpson and Hunter-Gaston were 0.926 and 0.968 for the locus 346_06, respectively. The virulence genes were present in all strains of S. chromogenes but not in other CNS. The genotyping method presented in this paper is a viable and easy method for typifying CNS isolates from mastitis cases in different regions and is an ideal mean of tracking this disease.
Enterobacteriaceae are considered one the most important zoonotic pathogens. In this study, we analyzed the characteristics of E. coli and Salmonella spp. strains present in carnivores from Janos Biosphere Reserve, Mexico. These microorganisms had been isolated from a wide range of domestic and free-range animals, including wild carnivores. Fifty-five individuals were sampled, and the presence of Salmonella and E. coli was determined by bacteriological standard methods. Strains isolated were characterized by molecular methods and in vitro infection assays. Eight different species of carnivores were captured, including coyotes (Canis latrans), gray fox (Urocyon cinereoargenteus), desert foxes (Vulpes macrotis), striped skunks (Mephitis mephitis), hooded skunks (Mephitis macroura), lynxes (Lynx rufus), raccoons (Procyon lotor), and badgers (Taxidea taxus). Salmonella spp. and E. coli were isolated from four species of carnivores. Five Salmonella spp. strains were isolated, and their molecular characterization revealed in three of them the presence of fimbrial and virulence genes associated with cell invasion. In vitro evaluation of these strains showed their capability to invade human Hep2 cells. Sixty-one E. coli strains were isolated; different serotypes and phylogroups were observed from these strains. Additionally, the presence of virulence genes showed differently.
Campylobacter fetus subsp. fetus is the causal agent of sporadic abortion in bovines and infertility that produces economic losses in livestock. In many infectious diseases, the immune response has an important role in limiting the invasion and proliferation of bacterial patho¬gens. Innate immune sensing of microorganisms is mediated by pattern-recognition receptors (PRRs) that identify pathogen-associated molecular patterns (PAMPs) and induces the secretion of several proinflammatory cytokines, like IL-1β, TNF-α, and IL-8. In this study, the expression of IL-1β, TNF-α, IL-8, and IFN-γ in bovine endometrial epithelial cells infected with C. fetus and Salmonella Typhimurium (a bacterial invasion control) was analyzed. The results showed that expression levels of IL-1β and IL-8 were high at the beginning of the infection and decreased throughout the intracellular period. Unlike in this same assay, the expression levels of IFN-γ increased through time and reached the highest peak at 4 hours post infection. In cells infected with S. Typhimurium, the results showed that IL8 expression levels were highly induced by infection but not IFN-γ. In cells infected with S. Typhimurium or C. fetus subsp. fetus, the results showed that TNF-α expression did not show any change during infection. A cytoskeleton inhibition assay was performed to determine if cytokine expression was modified by C. fetus subsp. fetus intracellular invasion. IL-1β and IL-8 expression were downregulated when an intracellular invasion was avoided. The results obtained in this study suggest that bovine endometrial epithelial cells could recognize C. fetus subsp. fetus resulting in early proinflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.