The contribution of the dendritic structure in catalysis of ester hydrolysis was investigated with a systematic peptide dendrimer series of increasing generation number (G1-G4) containing a catalytic consensus sequence His-Ser in all branches. A strong positive dendritic effect was observed with up to 100-fold increased histidine reactivity between G1 and G4. Kinetic studies and isothermal calorimetric titration experiments showed that the strong positive dendritic effect resulted from cooperativity between binding and catalysis.
Catalytic esterase peptide dendrimers with a core active site were discovered by functional screening of a 65,536-member combinatorial library of third-generation peptide dendrimers using fluorogenic 1-acyloxypyrene-3,6,8-trisulfonates as substrates. In the best catalyst, RMG3, ((AcTyrThr)(8)(DapTrpGly)(4)(DapArgSerGly)(2)DapHisSerNH2), ester hydrolysis is catalyzed by a single catalytic histidine residue at the dendrimer core. A pair of arginine residues in the first-generation branch assists substrate binding. The catalytic proficiency of dendrimer RMG3 (kcat/KM = 860 M(-1) min(-1) at pH 6.9) per catalytic site is comparable to that of the multivalent esterase dendrimer A3 ((AcHisSer)(8)(DapHisSer)(4)(DapHisSer)2DapHisSerNH2) which has fifteen histidines and five catalytic sites (Delort, E. et al. J. Am. Chem. Soc. 2004, 126, 15642-15643). Remarkably, catalysis in the single site dendrimer RMG3 is enhanced by the outer dendritic branches consisting of aromatic amino acids. These interactions take place in a relatively compact conformation similar to a molten globule protein as demonstrated by diffusion NMR. In another dendrimer, HG3 ((AcIlePro)(8)(DapIleThr)(4)(DapHisAla)(2)DapHisLeuNH2) by contrast, catalysis by a core of three histidine residues is unaffected by the outer dendritic layers. Dendrimer HG3 or its core HG1 exhibit comparable activity to the first-generation dendrimer A1 ((AcHisSer)(2)DapHisSerNH2). The compactness of dendrimer HG3 in solution is close to that a denatured peptide. These experiments document the first esterase peptide dendrimer enzyme models with a single catalytic site and suggest a possible relationship between packing and catalysis in these systems.
Peptide dendrimers built by iteration of the diamino acid dendron Dap-His-Ser (His = histidine, Ser = Serine, Dap = diamino propionic acid) display a strong positive dendritic effect for the catalytic hydrolysis of 8-acyloxypyrene 1,3,6-trisulfonates, which proceeds with enzyme-like kinetics in aqueous medium (Delort, E.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc. 2004, 126, 15642-3). Thirty-two mutants of the original third generation dendrimer A3 ((Ac-His-Ser)8(Dap-His-Ser)4(Dap-His-Ser)2Dap-His-Ser-NH2) were prepared by manual synthesis or by automated synthesis with use of a Chemspeed PSW1100 peptide synthesizer. Dendrimer catalysis was specific for 8-acyloxypyrene 1,3,6-trisulfonates, and there was no activity with other types of esters. While dendrimers with hydrophobic residues at the core and histidine residues at the surface only showed weak activity, exchanging serine residues in dendrimer A3 against alanine (A3A), beta-alanine (A3B), or threonine (A3C) improved catalytic efficiency. Substrate binding was correlated with the total number of histidines per dendrimer, with an average of three histidines per substrate binding site. The catalytic rate constant kcat depended on the placement of histidines within the dendrimers and the nature of the other amino acid residues. The fastest catalyst was the threonine mutant A3C ((Ac-His-Thr)8(Dap-His-Thr)4(Dap-His-Thr)2Dap-His-Thr-NH2), with kcat = 1.3 min(-1), kcat/k(uncat) = 90'000, KM = 160 microM for 8-bytyryloxypyrene 1,3,6-trisulfonate, corresponding to a rate acceleration of 18'000 per catalytic site and a 5-fold improvement over the original sequence A3.
Enzymelike kinetics were observed in the hydrolysis of 7‐hydroxy‐1‐methylquinolium esters 2 under the catalysis of three of a family of synthetic peptide dendrimers 1. Their synthesis was based on a symmetrical branching diamino acid (B), three variable amino acid positions (A1, A2, A3=His, Asp, Ser), and a disulfide bond dimerization strategy. All possible permutations of the catalytic triad of the amino acids aspartate, histidine, and serine at the variable positions gave a family of 21 peptide dendrimers.
Several bicyclic compounds bearing a 1,2-cyclopentanediol have been prepared from various anti- or syn-gamma-bromopropargylic diols and cis-dioxolanes under palladium(0) catalysis. The reaction proceeds through a 5-exo-dig cyclocarbopalladation. When the corresponding trans-dioxolanes are used, the only products isolated are obtained from a direct Stille cross-coupling reaction. [reaction: see text]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.