The ascomycete Candida albicans is the most common fungal pathogen in immunocompromised patients . Its ability to change morphology, from yeast to filamentous forms, in response to host environmental cues is important for virulence . Filamentation is mediated by second messengers such as cyclic adenosine 3',5'-monophosphate (cAMP) synthesized by adenylyl cyclase . The distantly related basidiomycete Cryptococcus neoformans is an encapsulated yeast that predominantly infects the central nervous system in immunocompromised patients . Similar to the morphological change in C. albicans, capsule biosynthesis in C. neoformans, a major virulence attribute, is also dependent upon adenylyl cyclase activity . Here we demonstrate that physiological concentrations of CO2/HCO3- induce filamentation in C. albicans by direct stimulation of cyclase activity. Furthermore, we show that CO2/HCO3- equilibration by carbonic anhydrase is essential for pathogenesis of C. albicans in niches where the available CO2 is limited. We also demonstrate that adenylyl cyclase from C. neoformans is sensitive to physiological concentrations of CO2/HCO3-. These data demonstrate that the link between cAMP signaling and CO2/HCO3- sensing is conserved in fungi and reveal CO2 sensing to be an important mediator of fungal pathogenesis. Novel therapeutic agents could target this pathway at several levels to control fungal infections.
Cryptococcus neoformans, a fungal pathogen of humans, causes fatal meningitis in immunocompromised patients. Its virulence is mainly determined by the elaboration of a polysaccharide capsule surrounding its cell wall. During its life, C. neoformans is confronted with and responds to dramatic variations in CO 2 concentrations; one important morphological change triggered by the shift from its natural habitat (0.033% CO 2 ) to infected hosts (5% CO 2 ) is the induction of capsule biosynthesis. In cells, CO 2 is hydrated to bicarbonate in a spontaneous reaction that is accelerated by carbonic anhydrases. Here we show that C. neoformans contains two -class carbonic anhydrases, Can1 and Can2. We further demonstrate that CAN2, but not CAN1, is abundantly expressed and essential for the growth of C. neoformans in its natural environment, where CO 2 concentrations are limiting. Structural studies reveal that Can2 forms a homodimer in solution. Our data reveal Can2 to be the main carbonic anhydrase and suggest a physiological role for bicarbonate during C. neoformans growth. Bicarbonate directly activates the C. neoformans Cac1 adenylyl cyclase required for capsule synthesis. We show that this specific activation is optimal at physiological pH.
The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.