An investigation of students’ knowledge after a traditional advanced high-school course in electromagnetism shows deficiencies of their knowledge in three major areas: (1) the structure of knowledge—e.g., realizing the importance of central ideas, such as Maxwell’s equations (expressed qualitatively); (2) conceptual understanding—e.g., understanding the relationships between the electric field and its sources; and (3) application of central relationships in problem solving. To remedy these deficiencies we propose an instructional model which integrates problem solving, conceptual understanding and the construction of the knowledge structure. The central activity of the students is a gradual construction of a hierarchical concept map organized around Maxwell’s equations as central ideas of the domain. The students construct the map in five stages: (1) SOLVE—they solve a set of problems that highlight the central ideas in the domain; (2) REFLECT—they reflect on the conceptual basis of their solutions; (3) CONCEPTUALIZE—they perform activities that deal with relevant conceptual difficulties; (4) APPLY—they carry out complex applications; (5) LINK—they link their activities to the evolving concept map. This integrative model (experimental treatment) was compared to an isolated treatment of drill and practice or treatment of conceptual difficulties without linkage to the proposed knowledge structure. The comparison shows that students in the experimental treatment performed better than the other students on measures of recall, conceptual knowledge and problem solving. Students in the experimental treatment were also able to transfer and extract central ideas in a domain different than physics.
The traditional teaching of physics in separate domains leads to a fragmented knowledge structure that has an adverse effect on the comprehension and recall of the central ideas. We describe a new program: MAOF ͑''overview'' in Hebrew͒, which relates large parts of mechanics and electromagnetism to each other via the key concepts of field and potential, and at the same time treats students' conceptual difficulties. The MAOF program can accompany any conventional course in mechanics and electromagnetism as part of the review process. The instructional model integrates problem solving, conceptual understanding, and the construction of a knowledge structure. It consists of five stages: solve, reflect, conceptualize, apply, and link. In order to construct the relationships within a domain, students solve simple and familiar problems, reflect on their solution methods, identify the underlying principles, and represent them in visual form, forming concept maps. Additional activities deal with conceptual difficulties and application of the information represented in the concept map. The maps are constructed at different levels of detail and are applied in further problem solving. Students who studied with MAOF significantly improved their understanding of central ideas associated with fields and potentials. They improved their understanding of the relationship between general concepts and their examples, and could better solve familiar and unfamiliar problems using these concepts.
How can one increase the awareness of teachers to the existence and importance of knowledge gained through physics education research ͑PER͒ and provide them with capabilities to use it? How can one enrich teachers' physics knowledge and the related pedagogical content knowledge of topics singled out by PER? In this paper we describe a professional development model that attempts to respond to these needs. We report on a study of the model's implementation in a program for 22 high-school experienced physics teachers. In this program teachers ͑in teams of 5-6͒ developed during a year and a half ͑about 330 h͒, several lessons ͑mini-modules͒ dealing with a topic identified as problematic by PER. The teachers employed a systematic researchbased approach and used PER findings. The program consisted of three stages, each culminating with a miniconference: 1. Defining teaching and/or learning goals based on content analysis and diagnosis of students' prior knowledge. 2. Designing the lessons using PER-based instructional strategies. 3. Performing a small-scale research study that accompanies the development process and publishing the results. We describe a case study of one of the groups and bring evidence that demonstrates how the workshop advanced: ͑a͒ Teachers' awareness of deficiencies in their own knowledge of physics and pedagogy, and their perceptions about their students' knowledge; ͑b͒ teachers' knowledge of physics and physics pedagogy; ͑c͒ a systematic research-based approach to the design of lessons; ͑d͒ the formation of a community of practice; and ͑e͒ acquaintance with central findings of PER. There was a clear effect on teachers' practice in the context of the study as indicated by the materials brought to the workshop. The teachers also reported that they continued to use the insights gained, mainly in the topics that were investigated by themselves and by their peers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.