BackgroundDuring the Ebola virus disease (EVD) epidemic in Liberia, contact tracing was implemented to rapidly detect new cases and prevent further transmission. We describe the scope and characteristics of contact tracing in Liberia and assess its performance during the 2014–2015 EVD epidemic.Methodology/Principal findingsWe performed a retrospective descriptive analysis of data collection forms for contact tracing conducted in six counties during June 2014–July 2015. EVD case counts from situation reports in the same counties were used to assess contact tracing coverage and sensitivity. Contacts who presented with symptoms and/or died, and monitoring was stopped, were classified as “potential cases”. Positive predictive value (PPV) was defined as the proportion of traced contacts who were identified as potential cases. Bivariate and multivariate logistic regression models were used to identify characteristics among potential cases.We analyzed 25,830 contact tracing records for contacts who had monitoring initiated or were last exposed between June 4, 2014 and July 13, 2015. Contact tracing was initiated for 26.7% of total EVD cases and detected 3.6% of all new cases during this period. Eighty-eight percent of contacts completed monitoring, and 334 contacts were identified as potential cases (PPV = 1.4%). Potential cases were more likely to be detected early in the outbreak; hail from rural areas; report multiple exposures and symptoms; have household contact or direct bodily or fluid contact; and report nausea, fever, or weakness compared to contacts who completed monitoring.Conclusions/SignificanceContact tracing was a critical intervention in Liberia and represented one of the largest contact tracing efforts during an epidemic in history. While there were notable improvements in implementation over time, these data suggest there were limitations to its performance—particularly in urban districts and during peak transmission. Recommendations for improving performance include integrated surveillance, decentralized management of multidisciplinary teams, comprehensive protocols, and community-led strategies.
BackgroundThe ongoing West African Ebola epidemic began in December 2013 in Guinea, probably from a single zoonotic introduction. As a result of ineffective initial control efforts, an Ebola outbreak of unprecedented scale emerged. As of 4 May 2015, it had resulted in more than 19,000 probable and confirmed Ebola cases, mainly in Guinea (3,529), Liberia (5,343), and Sierra Leone (10,746). Here, we present analyses of data collected during the outbreak identifying drivers of transmission and highlighting areas where control could be improved.Methods and FindingsOver 19,000 confirmed and probable Ebola cases were reported in West Africa by 4 May 2015. Individuals with confirmed or probable Ebola (“cases”) were asked if they had exposure to other potential Ebola cases (“potential source contacts”) in a funeral or non-funeral context prior to becoming ill. We performed retrospective analyses of a case line-list, collated from national databases of case investigation forms that have been reported to WHO. These analyses were initially performed to assist WHO’s response during the epidemic, and have been updated for publication.We analysed data from 3,529 cases in Guinea, 5,343 in Liberia, and 10,746 in Sierra Leone; exposures were reported by 33% of cases. The proportion of cases reporting a funeral exposure decreased over time. We found a positive correlation (r = 0.35, p < 0.001) between this proportion in a given district for a given month and the within-district transmission intensity, quantified by the estimated reproduction number (R). We also found a negative correlation (r = −0.37, p < 0.001) between R and the district proportion of hospitalised cases admitted within ≤4 days of symptom onset. These two proportions were not correlated, suggesting that reduced funeral attendance and faster hospitalisation independently influenced local transmission intensity. We were able to identify 14% of potential source contacts as cases in the case line-list. Linking cases to the contacts who potentially infected them provided information on the transmission network. This revealed a high degree of heterogeneity in inferred transmissions, with only 20% of cases accounting for at least 73% of new infections, a phenomenon often called super-spreading. Multivariable regression models allowed us to identify predictors of being named as a potential source contact. These were similar for funeral and non-funeral contacts: severe symptoms, death, non-hospitalisation, older age, and travelling prior to symptom onset. Non-funeral exposures were strongly peaked around the death of the contact. There was evidence that hospitalisation reduced but did not eliminate onward exposures. We found that Ebola treatment units were better than other health care facilities at preventing exposure from hospitalised and deceased individuals. The principal limitation of our analysis is limited data quality, with cases not being entered into the database, cases not reporting exposures, or data being entered incorrectly (especially dates, and possible mis...
BackgroundThe incidence of TB has doubled in the last 20 years in London. A better understanding of risk groups for recent transmission is required to effectively target interventions. We investigated the molecular epidemiological characteristics of TB cases to estimate the proportion of cases due to recent transmission, and identify predictors for belonging to a cluster.MethodsThe study population included all culture-positive TB cases in London residents, notified between January 2010 and December 2012, strain typed using 24-loci multiple interspersed repetitive units-variable number tandem repeats. Multivariable logistic regression analysis was performed to assess the risk factors for clustering using sociodemographic and clinical characteristics of cases and for cluster size based on the characteristics of the first two cases.ResultsThere were 10 147 cases of which 5728 (57%) were culture confirmed and 4790 isolates (84%) were typed. 2194 (46%) were clustered in 570 clusters, and the estimated proportion attributable to recent transmission was 34%. Clustered cases were more likely to be UK born, have pulmonary TB, a previous diagnosis, a history of substance abuse or alcohol abuse and imprisonment, be of white, Indian, black-African or Caribbean ethnicity. The time between notification of the first two cases was more likely to be <90 days in large clusters.ConclusionsUp to a third of TB cases in London may be due to recent transmission. Resources should be directed to the timely investigation of clusters involving cases with risk factors, particularly those with a short period between the first two cases, to interrupt onward transmission of TB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.