Abstract:The capability to monitor water status from crops on a regular basis can enhance productivity and water use efficiency. In this paper, high-resolution thermal imagery acquired by an unmanned aerial vehicle (UAV) was used to map plant water stress and its spatial variability, including sectors under full irrigation and deficit irrigation over nectarine and peach orchards at 6.12 cm ground sample distance. The study site was classified into sub-regions based on crop properties, such as cultivars and tree training systems. In order to enhance the accuracy of the mapping, edge extraction and filtering were conducted prior to the probability modelling employed to obtain crop-property-specific ('adaptive' hereafter) lower and higher temperature references (T wet and T dry respectively). Direct measurements of stem water potential (SWP, ψ stem ) and stomatal conductance (g s ) were collected concurrently with UAV remote sensing and used to validate the thermal index as crop biophysical parameters. The adaptive crop water stress index (CWSI) presented a better agreement with both ψ stem and g s with determination coefficients (R 2 ) of 0.72 and 0.82, respectively, while the conventional CWSI applied by a single set of hot and cold references resulted in biased estimates with R 2 of 0.27 and 0.34, respectively. Using a small number of ground-based measurements of SWP, CWSI was converted to a high-resolution SWP map to visualize spatial distribution of the water status at field scale. The results have important implications for the optimal management of irrigation for crops.
Viticulture is facing emerging challenges not only because of the effect of climate change on yield and composition of grapes, but also of a social demand for environmental‐friendly agricultural management. Adaptation to these challenges is essential to guarantee the sustainability of viticulture. The aim of this review is to present adaptation possibilities from the soil‐hidden, and often disregarded, part of the grapevine, the roots. The complexity of soil–root interactions makes necessary a comprehensive approach taking into account physiology, pathology and genetics, in order to outline strategies to improve viticulture adaptation to current and future threats. Rootstocks are the link between soil and scion in grafted crops, and they have played an essential role in viticulture since the introduction of phylloxera into Europe at the end of the 19th century. This review outlines current and future challenges that are threatening the sustainability of the wine sector and the relevant role that rootstocks can play to face these threats. We describe how rootstocks along with soil management can be exploited as an essential tool to deal with the effects of climate change and of emerging soil‐borne pests and pathogens. Moreover, we discuss the possibilities and limitations of diverse genetic strategies for rootstock breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.