Investigation of activity budgets in relation to seasonal, intrinsic (age, sex) and extrinsic (time of day, spatial) covariates enables an understanding of how such covariates shape behavioural strategies. However, conducting such investigations in the wild is challenging, because of the required large sample size of individuals across the annual cycle, and difficulties in categorising behavioural states and analysing the resulting individual‐referenced and serially correlated data. In this study, from telemetry tags deployed on 63 grey seals Halichoerus grypus and 126 harbour seals Phoca vitulina we used behavioural data, and movement data within a Bayesian state–space model (SSM), to define population‐level activity budgets around Britain. Using generalised estimating equations (GEEs) we then examined how time spent in four states (resting on land (hauled out), resting at sea, foraging and travelling) was influenced by seasonal, intrinsic and extrinsic covariates. We present and discuss the following key findings. 1) We found no evidence that regional variation in foraging effort was linked to regional population trajectories in harbour seals. 2) Grey seals demonstrated sex‐specific seasonal differences in their activity budgets, independent from those related to reproductive costs. 3) In these sympatric species there was evidence of temporal separation in time hauled out, but not in time foraging. 4) In both species, time spent resting at sea was separated into inshore (associated with tidal haul out availability) and offshore areas. Time spent resting at sea and on land was interchangeable to some extent, suggesting a degree of overlap in their functionality. This may result in a relaxation of the constraints associated with a central place foraging strategy. More generally, we demonstrate how a large dataset, incorporating differing tag parameters, can be analysed to define activity budgets and subsequently address important ecological questions.
International audienceSpecies distribution maps can provide important information to focus conservation efforts and enable spatial management of human activities. Two sympatric marine predators, grey seals Halichoerus grypus and harbour seals Phoca vitulina, have overlapping ranges on land and at sea but contrasting population dynamics around Britain: whilst grey seals have generally increased, harbour seals have shown significant regional declines. We analysed 2 decades of at-sea movement data and terrestrial count data from these species to produce high resolution, broad-scale maps of distribution and associated uncertainty to inform conservation and management. Our results showed that grey seals use offshore areas connected to their haul-out sites by prominent corridors, and harbour seals primarily stay within 50 km of the coastline. Both species show fine-scale offshore spatial segregation off the east coast of Britain and broad-scale partitioning off western Scotland. These results illustrate that, for broad-scale marine spatial planning, the conservation needs of harbour seals (primarily inshore, the exception being selected offshore usage areas) are different from those of grey seals (up to 100 km offshore and corridors connecting these areas to haul-out sites). More generally, our results illustrate the importance of detailed knowledge of marine predator distributions to inform marine spatial planning; for instance, spatial prioritisation is not necessarily the most effective spatial planning strategy even when conserving species with similar taxonomy
Summary As part of global efforts to reduce dependence on carbon‐based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at‐sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts.Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south‐east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another.Within an operational wind farm, there was a close‐to‐significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause.There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 μPa(p‐p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non‐piling scenario. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement.
Automatic Identification Systems (AIS) are collision avoidance devices used on-board both commercial and leisure craft. These systems report the position, track and speed of the vessel through Very High Frequency radio transmissions which are accessible to any suitable receiver. This paper explores the potential to use AIS data to inform small scale fisheries management and marine spatial planning. First, the propagation and reception of the line of sight AIS transmissions was modelled around the coast of Scotland to identify areas where the use of AIS may be compromised. Using open source Geographic Information System and relational database software, computationally efficient methods of processing and analysing AIS data were explored. Three months of AIS data derived from 274 Scottish small scale fishing vessels were used to provide spatio-temporal analyses of trip duration and distance travelled, location of fishing activities, and vessel dependency on fishing grounds. The coverage, opportunities and challenges of using AIS are discussed together with broader applications and future developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.