Results show that miR-182 and 187 are promising biomarkers for prostate cancer prognosis to identify patients at risk for progression and for diagnosis to improve the predictive capability of existing biomarkers.
miRNAs are predicted to control the activity of approximately 60% of all protein-coding genes participating in the regulation of several cellular processes and diseases, including cancer. Recently, we have demonstrated that miR-187 is significantly downregulated in prostate cancer (PCa) and here we propose a proteomic approach to identify its potential targets. For this purpose, PC-3 cells were transiently transfected with miR-187 precursor and miRNA mimic negative control. Proteins were analyzed by a two-dimensional difference gel electrophoresis (2D-DIGE) and defined as differentially regulated if the observed fold change was ±1.06. Then, MALDI-TOF MS analysis was performed after protein digestion and low abundance proteins were identified by LC–MS/MS. Peptides were identified by searching against the Expasy SWISS PROT database, and target validation was performed both in vitro by western blot and qRT-PCR and in clinical samples by qRT-PCR, immunohistochemistry and ELISA. DIGE analysis showed 9 differentially expressed spots (p<0.05) and 7 showed a down-regulated expression upon miR-187 re-introduction. Among these targets we identified aldehyde dehydrogenase 1A3 (ALDH1A3). ALDH1A3 expression was significantly downregulated in PC3, LNCaP and DU-145 cells after miR-187 re-introduction. Supporting these data, the expression of ALDH1A3 was found significantly (p<0.0001) up-regulated in PCa samples and inversely correlated (p<0.0001) with miR-187 expression, its expression being directly associated with Gleason score (p = 0.05). The expression of ALDH1A3 was measured in urine samples to evaluate the predictive capability of this biomarker for the presence of PCa and, at a signification level of 10%, PSA and also ALDH1A3 were significantly associated with a positive biopsy of PCa. In conclusion, our data illustrate for the first time the role of ALDH1A3 as a miR-187 target in PCa and provide insights in the utility of using this protein as a new biomarker for PCa.
Dopamine replacement represents the standard therapy for Parkinson’s disease (PD), a common, chronic, and incurable neurological disorder; however, this approach only treats the symptoms of this devastating disease. In the search for novel disease-modifying therapies that target other relevant molecular and cellular mechanisms, Drosophila has emerged as a valuable tool to study neurodegenerative diseases due to the presence of a complex central nervous system, the blood–brain barrier, and a similar neurotransmitter profile to humans. Human PD-related genes also display conservation in flies; DJ-1β is the fly ortholog of DJ-1, a gene for which mutations prompt early-onset recessive PD. Interestingly, flies mutant for DJ-1β exhibit PD-related phenotypes, including motor defects, high oxidative stress (OS) levels and metabolic alterations. To identify novel therapies for PD, we performed an in vivo high-throughput screening assay using DJ-1β mutant flies and compounds from the Prestwick® chemical library. Drugs that improved motor performance in DJ-1ß mutant flies were validated in DJ-1-deficient human neural-like cells, revealing that zaprinast displayed the most significant ability to suppress OS-induced cell death. Zaprinast inhibits phosphodiesterases and activates GPR35, an orphan G-protein-coupled receptor not previously associated with PD. We found that zaprinast exerts its beneficial effect in both fly and human PD models through several disease-modifying mechanisms, including reduced OS levels, attenuated apoptosis, increased mitochondrial viability, and enhanced glycolysis. Therefore, our results support zaprinast as a potential therapeutic for PD in future clinical trials.
Combination nanotherapies for the treatment of breast cancer permits synergistic drug targeting of multiple pathways. However, poor carrier degradability, poor synergism of the combined drugs, low drug release regulation, and a lack of control on final macromolecule solution conformation (which drives the biological fate) limit the application of this strategy. The present study describes the development of a family of drug delivery systems composed of chemotherapeutic (doxorubicin) and endocrine therapy (aromatase inhibitor aminoglutethimide) agents conjugated to a biodegradable poly‐l‐glutamic acid backbone via various linking moieties. Data from in vitro cytotoxicity and drug release assessments and animal model validation select a conjugate family member with optimal biological performance. Exhaustive physicochemical characterization in relevant media (including the study of secondary structure, size measurements, and detailed small‐angle neutron scattering analysis) correlates biological data with the intrinsic supramolecular characteristics of the conjugate. Overall, this study demonstrates how a small flexible Gly linker can modify the spatial conformation of the entire polymer–drug conjugate, promote the synergistic release of both drugs, and significantly improve biological activity. These findings highlight the need for a deeper understanding of polymer–drug conjugates at supramolecular level to allow the design of more effective polymer–drug conjugates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.