Establishing and maintaining protected areas (PAs) are key tools for biodiversity conservation. However, this approach is insufficient for many species, particularly those that are wide-ranging and sparse. The cheetah Acinonyx jubatus exemplifies such a species and faces extreme challenges to its survival. Here, we show that the global population is estimated at ∼7,100 individuals and confined to 9% of its historical distributional range. However, the majority of current range (77%) occurs outside of PAs, where the species faces multiple threats. Scenario modeling shows that, where growth rates are suppressed outside PAs, extinction rates increase rapidly as the proportion of population protected declines. Sensitivity analysis shows that growth rates within PAs have to be high if they are to compensate for declines outside. Susceptibility of cheetah to rapid decline is evidenced by recent rapid contraction in range, supporting an uplisting of the International Union for the Conservation of Nature (IUCN) Red List threat assessment to endangered. Our results are applicable to other protection-reliant species, which may be subject to systematic underestimation of threat when there is insufficient information outside PAs. Ultimately, conserving many of these species necessitates a paradigm shift in conservation toward a holistic approach that incentivizes protection and promotes sustainable human-wildlife coexistence across large multiple-use landscapes.population viability analysis | threat assessment | protected areas | landscape conservation | megafauna T he spread and dominance of humans across the world during the Anthropocene have precipitated a sixth global biodiversity extinction crisis (1). To maximize biodiversity retention through this period of rapid change, scarce conservation resources need to be targeted toward species and ecosystems that are most Significance Here, we compile and present the most comprehensive data available on cheetah distribution and status. Our analysis shows dramatic declines of cheetah across its distributional range. Most cheetah occur outside protected areas, where they are exposed to multiple threats, but there is little information on population status. Simulation modeling shows that, where cheetah population growth rates are suppressed outside protected areas, extinction risk increases markedly. This result can be generalized to other "protection-reliant" species, and a decision tree is provided to improve their extinction risk estimation. Ultimately, the persistence of protection-reliant species depends on their survival outside and inside protected areas and requires a holistic approach to conservation that engages rather than alienates local communities.
Because of the large home range requirements of wide-ranging carnivores, protected areas are often too small to maintain large populations. Consequently these carnivores regularly move outside protected areas, where they are likely to be exposed to anthropogenic mortality. We used data from 15 packs of radio-collared African wild dogs Lycaon pictus to examine the level of anthropogenic mortality African wild dogs experience around Hwange National Park, Zimbabwe, and tried to determine whether the buffer zone outside the Park acts as an ‘ecological trap’. Over time, study packs moved their territories closer to or beyond the Park border. With the movement of territories into the buffer zone outside the Park, African wild dogs experienced an increasing level of anthropogenic mortality. Although larger litters were born outside the Park, mortality exceeded natality. Densities of the African wild dog in the study area were low and territories for given pack sizes were smaller outside the Park. Hence, the movement of packs outside the Park does not appear to be density related and the buffer zone is therefore unlikely to function as a classic sink. Favourable ecological conditions indicate that the buffer zone outside the Park is likely to serve as an ecological trap, with fitness-enhancing factors attracting African wild dogs outside the Park, where they are incapable of perceiving the higher mortality risk associated with mostly indirect anthropogenic causes. As far as we know this is one of the first studies describing an ecological trap for mammals.
Assessing the numbers and distribution of threatened species is a central challenge in conservation, often made difficult because the species of concern are rare and elusive. For some predators, this may be compounded by their being sparsely distributed over large areas. Such is the case with the cheetah Acinonyx jubatus. The IUCN Red List process solicits comments, is democratic, transparent, widely-used, and has recently assessed the species. Here, we present additional methods to that process and provide quantitative approaches that may afford greater detail and a benchmark against which to compare future assessments. The cheetah poses challenges, but also affords unique opportunities. It is photogenic, allowing the compilation of thousands of crowd-sourced data. It is also persecuted for killing livestock, enabling estimation of local population densities from the numbers persecuted. Documented instances of persecution in areas with known human and livestock density mean that these data can provide an estimate of where the species may or may not occur in areas without observational data. Compilations of extensive telemetry data coupled with nearly 20,000 additional observations from 39 sources show that free-ranging cheetahs were present across approximately 789,700 km2 of Namibia, Botswana, South Africa, and Zimbabwe (56%, 22%, 12% and 10% respectively) from 2010 to 2016, with an estimated adult population of 3,577 animals. We identified a further 742,800 km2 of potential cheetah habitat within the study region with low human and livestock densities, where another ∼3,250 cheetahs may occur. Unlike many previous estimates, we make the data available and provide explicit information on exactly where cheetahs occur, or are unlikely to occur. We stress the value of gathering data from public sources though these data were mostly from well-visited protected areas. There is a contiguous, transboundary population of cheetah in southern Africa, known to be the largest in the world. We suggest that this population is more threatened than believed due to the concentration of about 55% of free-ranging individuals in two ecoregions. This area overlaps with commercial farmland with high persecution risk; adult cheetahs were removed at the rate of 0.3 individuals per 100 km2 per year. Our population estimate for confirmed cheetah presence areas is 11% lower than the IUCN’s current assessment for the same region, lending additional support to the recent call for the up-listing of this species from vulnerable to endangered status.
BackgroundA high-quality reference genome assembly is a valuable tool for the study of non-model organisms. Genomic techniques can provide important insights about past population sizes and local adaptation and can aid in the development of breeding management plans. This information is important for fields such as conservation genetics, where endangered species require critical and immediate attention. However, funding for genomic-based methods can be sparse for conservation projects, as costs for general species management can consume budgets.FindingsHere, we report the generation of high-quality reference genomes for the African wild dog (Lycaon pictus) at a low cost (<$3000), thereby facilitating future studies of this endangered canid. We generated assemblies for three individuals using the linked-read 10x Genomics Chromium system. The most continuous assembly had a scaffold and contig N50 of 21 Mb and 83 Kb, respectively, and completely reconstructed 95% of a set of conserved mammalian genes. Additionally, we estimate the heterozygosity and demographic history of African wild dogs, revealing that although they have historically low effective population sizes, heterozygosity remains high.ConclusionsWe show that 10x Genomics Chromium data can be used to effectively generate high-quality genomes from Illumina short-read data of intermediate coverage (∼25x–50x). Interestingly, the wild dog shows higher heterozygosity than other species of conservation concern, possibly due to its behavioral ecology. The availability of reference genomes for non-model organisms will facilitate better genetic monitoring of threatened species such as the African wild dog and help conservationists to better understand the ecology and adaptability of those species in a changing environment.
Most people lack the opportunity to see non-domesticated animals in the wild. Consequently, people’s perception of wild animals is based on what they see on (social) media. The way in which (social) media portrays non-domesticated animals determines our perception of and behaviour to these animals. People like to interact with animals, which is why venues which offer the opportunity to interact with non-domesticated animals are popular wildlife tourist attractions (WTAs). However, these WTAs more often than not profit at the expense of animal welfare, conservation and human safety. Participation in such WTAs should therefore be discouraged. Through (social) media we are regularly exposed to images of non-domesticated animals in close interactions with humans. Exposure to such images seems to blur the line between what is a friendly domesticated animal and what is a potentially dangerous wild animal. Such images may also increase our desire to engage in interactions with non-domesticated animals ourselves and reduce moral concerns about the use of non-domesticated animals for such interactions, thereby promoting WTAs in which tourists can interact with non-domesticated animals. Wild cat species are commonly used in the wildlife tourism industry to interact with tourists. In this study, we determine whether portrayal of wild cat species in interactions with humans promotes WTAs with wild cats. We presented respondents with an image of a wild cat species (lion, cheetah, caracal) in a control setting, walked by a human (WTA), petted by a human (WTA) or in the wild and asked them to answer a fixed set of questions. We found that portraying wild cat species in interactions with humans reduced the fear of wild cats, encouraged people to regard WTAs with wild cats as acceptable and stimulated them to participate in such activities themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.