How the development of antibacterial T helper 17 (Th17) cells is selectively promoted by antigen-presenting dendritic cells (DCs) is unclear. We showed that bacteria, but not viruses, primed human DCs to promote IL-17 production in memory Th cells through the nucleotide oligomerization domain 2 (NOD2)-ligand muramyldipeptide (MDP), a derivative of bacterial peptidoglycan. MDP enhanced obligate bacterial Toll-like receptor (TLR) agonist induction of IL-23 and IL-1, which promoted IL-17 expression in T cells. The role of NOD2 in this IL-23-IL-1-IL-17 axis could be confirmed in NOD2-deficient DCs, such as DCs from selected Crohn's disease patients. Thus, antibacterial Th17-mediated immunity in humans is orchestrated by DCs upon sensing bacterial NOD2-ligand MDP.
Polymorphisms related to ORMDL3 are associated with asthma susceptibility, alterations in transcriptional regulation of ORMDL3, and changes in TH2 cytokine levels.
Key Points
MiR-146a expression is induced by TLR ligation expressed in pDCs. MiR-146a regulates pDC effector functions, including cytokine production and costimulatory capacity.
Type I and type III interferons (IFNs) are fundamental for antiviral immunity, but prolonged expression is also detrimental to the host. Therefore, upon viral infection high levels of type I and III IFNs are followed by a strong and rapid decline. However, the mechanisms responsible for this suppression are still largely unknown. Here, we show that IgG opsonization of model viruses influenza and respiratory syncytial virus (RSV) strongly and selectively suppressed type I and III IFN production by various human antigen‐presenting cells. This suppression was induced by selective inhibition of TLR, RIG‐I‐like receptor, and STING‐dependent type I and III IFN gene transcription. Surprisingly, type I and III IFN suppression was mediated by Syk and PI3K independent inhibitory signaling via FcγRIIa, thereby identifying a novel non‐canonical FcγRIIa pathway in myeloid cells. Together, these results indicate that IgG opsonization of viruses functions as a novel negative feedback mechanism in humans, which may play a role in the selective suppression of type I and III IFN responses during the late‐phase of viral infections. In addition, activation of this pathway may be used as a tool to limit type I IFN‐associated pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.