In 5–40% of respiratory infections in children, the diagnostics
remain negative, suggesting that the patients might be infected with a yet
unknown pathogen. Virus discovery cDNA-AFLP (VIDISCA) is a virus discovery
method based on recognition of restriction enzyme cleavage sites, ligation of
adaptors and subsequent amplification by PCR. However, direct discovery of
unknown pathogens in nasopharyngeal swabs is difficult due to the high
concentration of ribosomal RNA (rRNA) that acts as competitor. In the current
study we optimized VIDISCA by adjusting the reverse transcription enzymes and
decreasing rRNA amplification in the reverse transcription, using hexamer
oligonucleotides that do not anneal to rRNA. Residual cDNA synthesis on rRNA
templates was further reduced with oligonucleotides that anneal to rRNA but can
not be extended due to 3′-dideoxy-C6-modification. With these
modifications >90% reduction of rRNA amplification was established.
Further improvement of the VIDISCA sensitivity was obtained by high throughput
sequencing (VIDISCA-454). Eighteen nasopharyngeal swabs were analysed, all
containing known respiratory viruses. We could identify the proper virus in the
majority of samples tested (11/18). The median load in the VIDISCA-454 positive
samples was 7.2 E5 viral genome copies/ml (ranging from 1.4 E3–7.7 E6).
Our results show that optimization of VIDISCA and subsequent
high-throughput-sequencing enhances sensitivity drastically and provides the
opportunity to perform virus discovery directly in patient material.
Key Points
MiR-146a expression is induced by TLR ligation expressed in pDCs. MiR-146a regulates pDC effector functions, including cytokine production and costimulatory capacity.
Type I interferons have been typically studied for their effects in the context of bacterial or viral infections. However in this report, we provide evidence that Interferon-alpha (IFN-α) expressing cells are present in the thymus in the absence of infection. We show that pDC express the highest level of IFN-α and that MxA, which is exclusively expressed after engagement of the type I IFN receptor by IFN-α/β, is expressed in normal fetal and post-natal thymus, but not in the periphery. The highest level of MxA is expressed in mature thymocytes and pDC located in the medulla and at the cortico-medullary junction. The anti-microbial peptide LL-37, which is expressed in the thymus, when complexed with eukaryotic nucleic acids, induces the secretion of IFN-α by thymic pDC. This results in the upregulation of MxA expression in responsive thymocytes. We propose that the secretion of IFN-α in the thymus may function to regulate the rate of T cell development and modulate the requirements for the selection of developing T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.