Cross-communication between different signalling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. The transactivation of epidermal growth factor receptor (EGFR)-dependent signalling pathways upon stimulation of G-protein-coupled receptors (GPCRs), which are critical for the mitogenic activity of ligands such as lysophosphatidic acid, endothelin, thrombin, bombesin and carbachol, provides evidence for such an interconnected communication network. Here we show that EGFR transactivation upon GPCR stimulation involves proHB-EGF and a metalloproteinase activity that is rapidly induced upon GPCR-ligand interaction. We show that inhibition of proHB-EGF processing blocks GPCR-induced EGFR transactivation and downstream signals. The pathophysiological significance of this mechanism is demonstrated by inhibition of constitutive EGFR activity upon treatment of PC3 prostate carcinoma cells with the metalloproteinase inhibitor batimastat. Together, our results establish a new mechanistic concept for cross-communication among different signalling systems.
Communication between dierent cellular signaling systems has emerged as a common principle that enables cells to integrate a multitude of signals from its environment. Transactivation of the epidermal growth factor receptor (EGFR) represents the paradigm for cross-talk between G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). The recent identi®cation of Zn 2+ -dependent metalloproteinases and transmembrane growth factor precursors as critical elements in GPCR-induced EGFR transactivation pathways has de®ned new components of a cellular communication network of rapidly increasing complexity. Further elucidation of the molecular details of the EGFR transactivation mechanism will provide new understanding of its relevance for normal physiological processes and their pathophysiological deviations. Oncogene (2001) 20, 1594 ± 1600.
In multicellular organisms, communication between individual cells is essential for the regulation and coordination of complex cellular processes such as growth, differentiation, migration and apoptosis. The plethora of signal transduction networks mediating these biological processes is regulated in part by polypeptide growth factors that can generate signals by activating cell surface receptors either in paracrine or autocrine manner. The primary mediators of such physiological cell responses are receptor tyrosine kinases (RTKs) that couple ligand binding to downstream signalling cascades and gene transcription. Investigations over the past 18 years have revealed that RTKs are not only key regulators of normal cellular processes but are also critically involved in the development and progression of human cancers. Therefore, signalling pathways controlled by tyrosine kinases offer unique opportunities for pharmacological intervention. The aim of this review is to give a broad overview of RTK signalling involved in tumorigenesis and the possibility of target-selective intervention for anti-cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.