The occurrence of decompression sickness in animals and humans is characterized by the extreme variability of individual response. Nevertheless, models and analyses of decompression results have generally used a critical value approach to separate safe and unsafe decompression procedures. Application of the principle of maximum likelihood provides a formal and consistent way to quantify decompression risk and to apply models to data on decompression outcome. By use of the maximum likelihood principle, a number of models were fit to data from dose-response and maximum pressure-reduction experiments with both rats and men. Several different formulations of two- and three-parameter models described the data well. In addition to summarizing data sets, the analyses provide a way to maximize the value of experimental observations, test theoretical predictions, estimate uncertainty in conclusions, and recommend safe practices.
This investigation examined the question of whether gas mixtures containing multiple inert gases provide a decompression advantage over mixtures containing a single inert gas. Unanesthetized male albino rats, Rattus norvegicus, were subjected to 2-h simulated dives at depths ranging from 145 to 220 fsw. At pressure, the rats breathed various He-N2-Ar-O2 mixtures (79.1% inert gas-20.9% O2); they were then decompressed rapidly (within 10 s) to surface pressures. The probability of decompression sickness (DCS), measured either as severe bends symptoms or death, was related to the experimental variables in a Hill equation model incorporating parameters that account for differences in the potencies of the three gases and the weight of the animal. The relative potencies of the three gases, which affect the total dose of decompression stress, were determined as significantly different in the following ascending order of potency: He less than N2 less than Ar; some of these differences were small in magnitude. With mixtures, the degree of decompression stress diminished as either N2 or Ar was replaced by He. No obvious advantage or disadvantage of mixtures over the least potent pure inert gas (He) was evident, although limits to the expectation of possible advantage or disadvantage of mixtures were defined. Also, model analysis did not support the hypothesis that the outcome of decompression with multiple inert gases in rats under these experimental conditions can be explained totally by the volume of gas accumulated in the body during a dive.
Decrements in vital capacity (% delta VC) were proposed by the Pennsylvania group in the early 1970s as an index of O2-induced lung damage. These workers used the combined effects of PO2 and time of exposure to develop recommendations to limit expected % delta VC. Adopting this general approach, we fitted human pulmonary O2 toxicity data to the hyperbolic equation % delta VC = Bs.(PO2 - B1).(time)B3 using a nonlinear least squares analysis. In addition to the data considered in 1970, our analysis included new data available from the literature. The best fit was obtained when 1) an individual slope parameter, Bs, was estimated for each subject instead of an average slope; 2) PO2 asymptote B1 = 0.38 ATA; and 3) exponent B3 = 1.0. Wide individual variation imposed large uncertainty on any % delta VC prediction. A 12-h exposure to a PO2 of 1 ATA would be expected to yield a median VC decrement of 4%. The 80% confidence limits, however, included changes from +1.0 and -12% delta VC. Until an improved index of pulmonary O2 toxicity is developed, a simplified expression % delta VC = -0.011.(PO2 - 0.5).time (PO2 in ATA and time in min) can be used to predict a median response with little loss in predictability. The limitations of changes in VC as an index are discussed.
Several current theories of decompression sickness (DCS) presume the preexistence of gas bubble nuclei in tissue, because the de novo nucleation of gas bubbles in the body is thought to be theoretically impossible. Reexamination of nucleation theory reveals the overwhelming importance of two parameters: gas supersaturation and tissue surface tension (gamma). For the high gamma of pure water nucleation theoretically requires more than 1,000 ATA supersaturation. Lower values of gamma allow nucleation to occur with vastly smaller supersaturations. Application of homogeneous nucleation theory can provide reasonable fits to both rat and human pressure-reduction data with values of gamma within the range reported for biological fluids (below 5 dyn/cm). The initial bubble sizes predicted are 0.1 micron or less. The presence of heterogeneous sites, for example crevices and lipid surfaces, makes nucleation even more likely.
Background Opioid use disorders (OUDs) are an epidemic causing catastrophic consequences to individuals, families, and society despite treatments including psychotherapy, substitution therapy or receptor blockers, and psychoeducation. We have developed a novel treatment that combines unilateral transcranial photobiomodulation (t-PBM) to the hemisphere with a more positive valence by Dual Brain Psychology (DBP). Methods We used a randomized, double blind, placebo-controlled protocol in which 22 patients with significant opioid cravings and a history of recent or current OUD attended three 1-h weekly sessions. After baseline measures of opioid craving and other psychometrics, subjects received two unilateral t-PBM applications (810 nm CW LED, 250 mW/cm 2 , 60 J/cm 2 , 4 min) or a sham (foil-covered LED) at F3 or F4. Prior to any treatment we used two tests to determine which hemisphere was more associated with a negative outlook and cravings and treated that side before the more positive hemisphere. Primary outcome measure was an opioid craving scale (OCS). Secondary outcomes were weekly Hamilton Depression (HDRS) and Anxiety (HARS) Rating Scales prior to treatments and at follow-up. Results Immediately after treatment the OCS improved significantly for both the sham and active treatments, but one week later the active treatment showed a 51.0% (SD 33.7) decrease in OCS while a week after the sham treatments there was a decrease of only 15.8% (SD 35.0) (by Wilcoxon Sign Rank Test, p = 0.004) and by a mixed model it was p = 0.0071. The effect size for the differences between active and sham was 0.73. For the active treatment from before and after treatment the effect size was 1.51 and for the sham, 0.45. The HDRS improved from a baseline of 15.1 to 8.8 (SD 10.3) a week after the active treatment and to 13.3 (SD 12.9) after the sham (p = 0.0071). HARS improved from 14.7 to 8.0 (SD 13.2) after the active treatments and to 14.3 (SD 16.0) after the sham, p = 0.08. Active treatment of the positive hemisphere after the negative hemisphere significantly improved the OCS, but there was no significant difference after the sham treatment. One patient complained of 2 h of abdominal bloating and dropped out; no other adverse effects were observed. Discussion Unilateral t-PBM to the hemisphere with a more positive hemispheric emotional valence was an effective and safe treatment for opioid cravings as well as for depression and anxiety. Our results also lend support to the underlying premises of DBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.