Hypergraphs capture multi-way relationships in data, and they have consequently seen a number of applications in higher-order network analysis, computer vision, geometry processing, and machine learning. In this paper, we develop the theoretical foundations in studying the space of hypergraphs using ingredients from optimal transport. By enriching a hypergraph with probability measures on its nodes and hyperedges, as well as relational information capturing local and global structure, we obtain a general and robust framework for studying the collection of all hypergraphs. First, we introduce a hypergraph distance based on the co-optimal transport framework of Redko et al. and study its theoretical properties. Second, we formalize common methods for transforming a hypergraph into a graph as maps from the space of hypergraphs to the space of graphs and study their functorial properties and Lipschitz bounds. Finally, we demonstrate the versatility of our Hypergraph Co-Optimal Transport (HyperCOT) framework through various examples.Recent years have seen the extension of the Gromov-Wasserstein (GW) framework-originally developed as a tool for comparing metric measure spaces [27, 28]-to probabilistic graph matching tasks [36,20,46,45,9,43,10]. The numerous benefits of this approach include computability via gradient descent [31,17] or backpropagation [44], state-of-the-art performance in tasks such as graph partitioning [45,12], and an underlying theoretical Riemannian framework [38,11]. These successes motivate the development of a GW framework for hypergraphs, which is the goal of this paper. Our contributions include:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.