Abstract. In the actual interconnected world, the speed of broadcasting of information leads the formation of opinions towards more and more immediacy. Big social networks, by allowing distribution, and therefore broadcasting of information in a almost instantaneous way, also speed up the formation of opinions concerning actuality. Then, these networks are great observatories of opinions and e-reputation. In this e-reputation monitoring task, it is easy to get a set of information (web pages, blog pages, tweets,...) containing a chosen word or a set of words ( a company name, a domain of interest,...), and then we can easily search for the most used words. But a harder, but more interesting task, is to track the set of jointly used words in this dataset, because this latter contains the more shared advice about the initial searched set of words. Precisely, the exhaustive discovering of the shared properties of a collection of objects is the main task of the Galois lattices used in the Formal Concept Analysis. In this article we state clearly the characteristics, advantages and constraints of one of the more successful online social networks: Twitter. Then we detail the difficult task of tracking, on Twitter, the most forwarded information about a chosen subject. We also explain how the characteristics of Galois lattices permit to solve elegantly and efficiently this problem. But, retrieving the most used corpus of words is not enough, we have to show the results in an informative and readable manner, which is not easy when the result is a Galois Lattice. Then we propose a visualisation called topigraphic network of tags, which represent a tag cloud in a network of concepts with a topographic allegory, which permits to visualise the more important concepts found about a given search on Twitter.
Abstract. The incredible rising of on-line social networks gives a new and very strong interest to the set of techniques developed since several decades to mining graphs and social networks. In particularly community detection methods can bring very valuable informations about the structure of an existing social network in the Business Intelligence framework. In this chapter we give a large view, firstly of what could be a community in a social network, and then we list he most popular techniques to detect such communities. Some of these techniques were particularly developed in the SNA context, while other are adaptations of classical clustering techniques. We have sorted them in following an increasing complexity order, because with very big graphs the complexity can be decisive for the choice of an algorithm.
Abstract. In the enterprise context, People need to visualize different types of interactions between heterogeneous objects (e.g. product and site, customers and product, people interaction (social network)...). The existing approaches focus on social networks extraction using web document. However a considerable amount of information is stored in relational databases. Therefore, relational databases can be seen as rich sources for extracting a social network. The extracted network has in general a huge size which makes it difficult to analyze and visualize. An aggregation step is needed in order to have more understandable graphs. In this chapter, we propose a heterogeneous object graph extraction approach from a relational database and we present its application to extract social network. This step is followed by an aggregation step in order to improve the visualisation and the analyse of the extracted social network. Then, we aggregate the resulting network using the k-SNAP algorithm which produces a summarized graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.