Abstract. In the enterprise context, People need to visualize different types of interactions between heterogeneous objects (e.g. product and site, customers and product, people interaction (social network)...). The existing approaches focus on social networks extraction using web document. However a considerable amount of information is stored in relational databases. Therefore, relational databases can be seen as rich sources for extracting a social network. The extracted network has in general a huge size which makes it difficult to analyze and visualize. An aggregation step is needed in order to have more understandable graphs. In this chapter, we propose a heterogeneous object graph extraction approach from a relational database and we present its application to extract social network. This step is followed by an aggregation step in order to improve the visualisation and the analyse of the extracted social network. Then, we aggregate the resulting network using the k-SNAP algorithm which produces a summarized graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.