Using a particle-in-cell simulation, the characteristics of electrostatic waves are investigated in a three-electron component plasma including an electron beam. A Maxwellian distribution is used to describe the electron velocities. Three electrostatic modes are excited, namely electron plasma, electron acoustic, and beam-driven waves. These modes have a broad frequency spectrum and have been associated with intense broadband electrostatic noise observed in the Earth's auroral zone. The simulation results compare well with analytical dispersion and growth rate relations. This agreement serves to validate the simulation technique. V C 2012 American Institute of Physics.
Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.