Taro is important for its nutritional content, medicinal use, and bioethanol production. The aim of the present study was to compare different semi-automated bioreactors (SABs) during in vitro multiplication of C. esculenta. The SABs used were temporary immersion bioreactors (TIBs), SETIS™ bioreactors and ebb-and-flow bioreactors; semi-solid culture medium was used as a control treatment. At 30 d of culture, different developmental variables, determination of chlorophyll, stomatal content, and survival percentage during acclimatization were evaluated. SABs increased the shoot multiplication rate relative to the semi-solid medium; however, the SETIS™ bioreactor showed the highest shoot production, with 36 shoots per explant, and the highest chlorophyll content. The stomatal index was higher in the semi-solid medium compared to the SABs, while the percentage of closed stomata was higher in the SABs than in the semi-solid culture medium. The survival rate during acclimatization showed no differences among the culture systems assessed, obtaining survival rates higher than 99%. In conclusion, the SETIS™ bioreactor showed the highest multiplication rate; however, other bioreactor alternatives are available for semi-automation and cost reduction for micropropagation of C. esculenta.
The symbiotic associations between arbuscular mycorrhizal fungi (AMF) and plants can induce drought stress tolerance. In this study, we evaluated the effect of Glomus intraradices, a mycorrhizal fungus, on the ex vitro development and survival of sugarcane plantlets subjected to drought stress during the acclimatization stage of micropropagation. In vitro obtained sugarcane plantlets (Saccharum spp. cv Mex 69–290) were inoculated with different doses of G. intraradices (0, 100, and 200 spores per plantlet) during greenhouse acclimatization. Sixty days after inoculation, plantlets were temporarily subjected to drought stress. We evaluated the survival rate, total chlorophyll, total protein, carotenoids, proline, betaine glycine, soluble phenolic content, and antioxidant capacity every 3 days for 12 days. Symbiotic interaction was characterized by microscopy. Our results showed that the survival rate of inoculated plants was higher in 45% than the treatment without mycorrhizae. Total chlorophyll, protein, proline, betaine glycine content, and antioxidant capacity were increased in AMF inoculated plants. The soluble phenolic content was higher in non-inoculated plants than the treatment with mycorrhizae during the drought stress period. Microscopy showed the symbiotic relationship between plant and AMF. The early inoculation of 100 spores of G. intraradices per sugarcane plantlet during the acclimatization stage could represent a preconditioning advantage before transplanting into the field and establishing basic seedbeds.
Soil salinity is a problem that affects soil fertility and threatens agri-food crop production worldwide. Biotechnology, through plant micropropagation and the use of biofertilizers such as arbuscular mycorrhizal fungi (AMF), is an alternative to increase productivity and induce tolerance to salinity stress in different crops. This study aimed to evaluate the effect of different doses of the fungus Glomus intraradices on the ex vitro development of taro (Colocasia esculenta L. Schott cv. Criolla) plantlets under salinity stress during the acclimatization stage. In vitro-obtained C. esculenta plantlets were inoculated at different doses (0, 100, and 200 spores per plantlet) of G. intraradices during acclimatization. At 60 d of acclimatization in the greenhouse, plantlets were exposed to 100 mM NaCl salinity stress for 10 d. After the stress period, plantlet development, colonization percentage, and biomass were evaluated. In addition, the content of chlorophyll, carotenoids, proteins, proline, glycine-betaine, soluble phenols, and antioxidant capacity were quantified. The results showed differences in the developmental, physiological, and biochemical variables evaluated; however, no changes in total protein content were observed. Spore colonization showed that the symbiotic association has positive effects on the development of plantlets with or without salinity stress. This symbiotic interaction contributes to salinity stress tolerance in C. esculenta plantlets. The early application of AMF in in vitro-obtained taro plantlets is an alternative to increase or maintain the productivity of this crop in saline soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.