We characterize those finitely generated commutative rings which are (parametrically) bi-interpretable with arithmetic: a finitely generated commutative ring A is bi-interpretable with (N, +, ×) if and only if the space of non-maximal prime ideals of A is nonempty and connected in the Zariski topology and the nilradical of A has a nontrivial annihilator in Z. Notably, by constructing a nontrivial derivation on a nonstandard model of arithmetic we show that the ring of dual numbers over Z is not bi-interpretable with N.
We prove first-order definability of the prime subring inside polynomial rings, whose coefficient rings are (commutative unital) reduced and indecomposable. This is achieved by means of a uniform formula in the language of rings with signature $(0,1,+,\cdot )$. In the characteristic zero case, the claim implies that the full theory is undecidable, for rings of the referred type. This extends a series of results by Raphael Robinson, holding for certain polynomial integral domains, to a more general class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.